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RESUME

Cilem disertacni prace je navrh a ovéfeni vhodné metody fizeni nékterych typi
chemickych reaktori. Chemické reaktory se obecné vyznacuji nelinearnimi vlastnostmi,
které jsou ve vétSin€é piipadi znacné vyrazné. Proto pouziti konvencnich metod jejich
tfizeni PI resp. PID regulatory s pevn¢ nastavenymi parametry muze byt velmi nekvalitni

nebo 1 nemozZné.

Nutnym piredpokladem uspé$ného navrhu fizeni procest této tridy je predstava o
jejich statickych a dynamickych vlastnostech. Jednou z moznosti, jak znalosti o téchto
vlastnostech ziskat je méfeni na realném zafizeni. Toto ovSem vétSinou neni mozZné
uskute¢nit. Jako jedina schiidna cesta se pak jevi staticka a dynamicka analyza fizeného
procesu pomoci simulaci, tj. experimentd na jeho matematickém modelu. Simula¢ni
metody maji i dal$i vyhody oproti experimentim na realném zatizeni, jako jsou mensi

¢asové naroky, nizsi naklady a hlavné bezpec¢nost.

Staticka analyza procesu ukazuje chovani systému v ustadleném stavu coz obvykle
slouzi jako vychozi bod pro volbu optimalniho pracovniho bodu, tzn. takové kombinace
vstupnich veliCin, pfi které je produkce maximalni s minimalnimi naklady. Dynamicka
analyza je dal§im krokem po statické analyze a ukazuje chovani systému po zméné

vstupnich veli¢in. Toto chovani ndm posléze poslouzi pro volbu vhodné fidici metody.
V préci jsou pouzity dvé metody ze tfidy tzv. modernich metod fizeni.

V prvnim pfipadé metoda spojitého adaptivniho fizeni, zalozend na volbé
externiho linearniho modelu (ELM) ptivodné nelinearniho systému a pouziti regulatoru s
parametry piestavovanymi v zavislosti na pribézné identifikovanych parametrech ELM
fizeného procesu. Pti identifikaci je pouzita obecné znama metoda nejmensich Ctverci
spolu s jejimi modifikacemi. Pfi syntéze je v tomto pfipad¢ pouzita polynomialni metoda
spole¢né s metodou piifazeni poli a technikou LQ (linearniho kvadatického) fizeni. Rizeni

je uvazovano v konfiguraci s jednim (1DOF) i se dvéma (2DOF) stupni volnosti.
Ve druhém piipad¢ je pouzita metoda zalozena na zobecnéném prediktivnim fizeni,
kde se posloupnost fidicich signalti vypocita na zakladé minimalizace odchylky vystupni

veli¢iny a zadané veli¢iny v definovaném budoucim horizontu.



Vsechny metody jsou nejdiive ovéfeny simulacné na matematickych modelech
pratocného reaktoru (CSTR) a trubkového reaktoru, ale také praktickym méfenim na
realném modelu pritocného chemického reaktoru. Dosazené vysledky ukazuji pouzitelnost

navrzenych metod v realnych systémech.

Kli¢ova slova: Pruto¢ny reaktor, trukovy reaktor, modelovani, simulace, staticka analyza,

dynamicka analyza, adaptivni fizeni, prediktivni fizeni, polynomialni metody



ABSTRACT

Design and verification of suitable methods for control of two types of chemical
reactors are the main aims of this work. Chemical reactors are often characterized by
highly nonlinear behaviour. In such a case the use of the conventional control strategies

that employ PI or PID controllers with fixed parameters can result in poor performance.

Knowledge about the static and dynamic properties is a necessary condition for
design of a controller. One possibility how to obtain such information about the system is
the investigation of the real system. Unfortunately, measurements on the real system are
not always feasible. The only way how to obtain static and dynamic behaviour of these
systems is the use of simulation, i.e. experiments on their mathematical model. Simulations
have several advantages over experiments on the real system. Among them are the lower

costs, increased safety and less time consumption.

Steady-state analysis is usually the first step in the investigation of the system.
Steady-state analysis shows the behaviour of the system in the steady state which can help
with the choice of the optimal working point, i.e. the appropriate combination of the input
variables which results in maximal production with minimal cost. The next step after the
steady-state analysis is the dynamic analysis which investigates the dynamic properties of

the system. Based on dynamic analysis, the suitable control strategy can be chosen.

Two modern control approaches are investigated in this work. The first approach is
the adaptive control which is based on external linear model (ELM) of the originally
nonlinear system. The parameters of the model are identified recursively and controller
parameters are recomputed in each step. Model parameters are obtained via well-known
recursive least-squares method and its modifications. Polynomial, pole-placement and
Linear-Quadratic (LQ) approaches are employed for controller synthesis. Two control
system configurations are considered during the controller design: one degree-of-freedom

(1DOF) and two degrees-of-freedom (2DOF).

The second approach used in this work is the Generalized Predictive Control (GPC)
where the future control sequence is computed by the minimizing the error between

reference and output signal on the prediction horizon.



All methods were first examined by simulations on mathematical models of two
types of chemical reactors — the Continuous Stirred Tank Reactor (CSTR) and the tubular
chemical reactor and then verified by measurements on the laboratory model of the CSTR.

Results have proved the applicability of the proposed methods on real systems.

Keywords: CSTR, tubular chemical reactor, modelling, simulation, steady-state analysis,

dynamic analysis, adaptive control, predictive control, polynomial methods
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Laplace transform of the input

Laplace transform of the output

polynomial which includes initial conditions
continuous-time transfer function of the system
filtered input variable

filtered output variable
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c(0) filtration polynomial

0,(5), 03(5) polynomial of initial conditions

w(s) rational function of initial conditions

t discrete time moment

T, sampling period

n degree of the polynomial a(s)

m degree of the polynomial b(s)

o(t) data vector in continuous-time ELM

o) vector of parameters in continuous-time ELM
q shifting operator

2,z discrete-time complex variable

U(z) Z-transformation of the input variable

Y(z) Z-transformation of the output variable

G(2) discrete-time transfer function of the system
a(z), b(2) discrete-time polynomials in the transfer function of the system G(2)
e(k) random immeasurable component

0 shifting operator in delta

y complex variable in delta

S optional parameter in delta

a’(z), b'(z) discrete-time polynomials in transfer function of the system G(z) in delta
t’ discrete time for delta

us(k) input variable in delta

vs(k) output variable in delta
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(k) data vector in delta ELM

O5(k) vector of parameters in delta ELM
P(k) estimated output variable

e(k) prediction error

(k) estimated vector of parameters

P(k) covariance matrix

L(k) additional vector for identification
y(k) additional constant for identification

Aod1(k),Aa(k)  forgetting factors for identification
J cost function
K constant

r(k),p(k),n(k),o(k),x(k),p; auxiliary constants for identification with directional forgetting

0(s), R(s) transfer functions of the controller

W(s) transfer functions of the reference signal
V(s) transfer functions of the disturbance
E(s) transfer functions of the control error

h(8),h.(s) numerators of W(s) and V(s)
Ji(8).£5(5) denominators of W(s) and V(s)

p(s),q(s),7(s)  polynomials in the controller transfer functions Q(s) and R(s)

d(s) optional stable polynomial on the right side of Diophantine equations
p (s) modified polynomial p(s)

1(s) least common divisor from f,,(s) and f,(s)

w(t) reference signal (wanted value)
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t(s)

ka

i

Qi

W;

m(s), n(s),g(s)
a*(s),n*(s)
MHLo,PLo
()

Jro

Jepc

N,

NiL,N;
0u()-Af)
J

E(z"), F{z")

G.Fyu

H.b f

auxiliary polynomial

constant

roots of the polynomial d(s)

real part of the root s;

imaginary part of the root s;

parts of the polynomial d(s)

spectral pairs of polynomials a(s) and n(s)
weighting factors in LQ

difference of the input variable in LQ

cost function in LQ

const function in GPC

control horizon

minimum and maximum costing horizons
weighting sequences in GPC

discrete time step

polynomials obtained by dividing of 1 by 4(z™")

dead time of the system
coefficients of polynomials E/(z™"), Fi(z"")
additional polynomial

coefficients of the polynomial G(z™")

vector forms of the polynomials Gj(z'l), Fj(z'l) and y(5), u(y)

vector of reference values

auxiliary matrixes and vectors
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II. PRACTICAL PART

Cy

Cp

kikaks

kOl,k 02,k 03

me
Q.
E\E3 E;5
hi, ha, hy

ny

concentration of the compound A
concentration of the compound B
temperature of the reactant
temperature of the cooling
volumetric flow rate of the reactant
volume or reactant

reaction rates

pre-exponential factors

input temperature of the reactant
reaction heat

surface of the cooling jacket

heat transfer coefficients

specific heat capacity of the reactant
specific heat capacity of the coolant
weight of the coolant

heat removal of the cooling liquid
activation energies for reactions
enthalpy of reactions

number of pipes in tubular reactor

steady-state values of the state variables

initial-state values of the state variables

time variable
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u(t)
w(?)
vi(?)
y1s(1)
5.5,

I

N

Iy

a;
H1o-PLo
Oustu
Vs Ve
S

T,

dy, dy, ds

x(%)

space variable

input variables

wanted value (reference signal)
disturbances

output variables

control quality criteria

step in the computation of S, and S,

number of steps in the computation of S, and S,

time of the simulation
position of the root
weighting factors in LQ
weighting sequences in GPC
fluid velocities

constants

temperature of the pipe wall
diameters

general variable
discretization step

length of the reactor

number of parts
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INTRODUCTION

Chemical reactors belong to the most often equipments in the chemical and
biochemical industry. Simulation and modelling possibilities rise with the increasing
impact of the digital technology and especially with the computer technology which grows
exponentially every moment. You can find intelligent control system in every field of the

human living, not only industry.

The goal of the work is to apply some of these methods on specific types of
chemical reactors like Continuous Stirred Tank Reactors (CSTR) and tubular chemical

reactors.

Specific design of the controller is usually preceed by few very important steps.
Not every property of the controlled system is known before we start and that is why we
perform simulation experiments on the system. There are two main types of the simulation
— (1) experiment on the real model and (2) computer simulation. Computer simulation is
very often used at present as it has many advantages over an experiment on a real system,

which is not feasible and can be dangerous, or time and money demanding.

The first step is system model creation. This model is usually a mathematical
model which describes the original process in the best way. Balances inside the reactor are
usually used for mathematical model creation. Resulted set of the differential equations is

then subjected to the static and dynamic analysis.

The static analysis displays behaviour of the system in the system in the steady-
state. This study results in the optimal working point. On the other hand, the dynamic
analysis provides step, frequency responses etc. which display dynamic behaviour of the
system and they are a base for choosing an external linear model. Numerical mathematics

is widely used in the solution of these two analyses.

Many chemical processes have nonlinear properties. There are several methods
how to overcome nonlinearity. One approach is choosing the External Linear Model
(ELM). If the input variable is a step function, we can call the course of the output variable

a “step response”. This step response is then used as a guide to the optimal ELM selection.
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The next step after simulation is to look at the problem from the control point of
view. Two main control strategies were used in the work — the adaptive control and the
generalized predictive control. The adaptive control in this work is based on recursive
identification of the ELM of the controlled plant and these parameters are then used for
computation of the controller. The second control strategy, the predictive control, is based
on calculation of the future values of the input (manipulated) variable which force output
variable close to the reference signal (wanted value) and minimize control error in defined

prediction horizon.
The work is divided in the five main numbered chapters.

The first chapter gives overview in the research area of the modelling, simulation,
identification and control whereas the second chapter formulates the main goals of this

dissertation.

The section number three is focused on the theoretical knowledge about the
process from the modelling through the simulation to the control of the process. The last

sub-chapter is describes types of chemical reactors used in industry.

The fourth part of the work shows simulation results of the steady-state, dynamic
and control analyses for continuous stirred tank reactor and plug-flow reactor and results

from the control analyses on the real model of the continuous stirred tank reactor.

The last part is discussion of the obtained results and conclusion of the achieved

goals in this work.

Tables, figures and equations are numbered recursively within a chapter and

literature is referred to in square brackets.
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1 STATE OF ART

It is known that almost all processes in the nature have a nonlinear behaviour. The

goal of all researchers in nonlinear theory is to somehow overcome this nonlinearity.

Typical examples of nonlinear systems are chemical processes. One of the most
important chemical equipment types is chemical reactor. A chemical reactor is a vessel or
pipe which is used for the production of chemicals used in chemical, biochemical, drug
and other industries through a specific reaction inside. Reactors should be divided in
several ways — by the chemical reaction inside the reactor [1], by the kinetics [2] and [3]
etc. The division from the construction point of view ([4], [2]) is one of the most common.
We can come across a batch, semi-batch reactor or a continuous stirred tank reactor
(CSTR) or series of CSTR’s. These reactors belong to the class of tank-reactor equipment,

while the tubular chemical reactor is a typical member of the pipe-reactor [5].

The starting period for the investigation of the chemical processes can be set the
beginning of the 1940s but the real starting point of the process control theory was in the
1970s, when the energy costs had a high importance [6] and the increasing development of

the computer technology provided a better verification of theoretical knowledge.

As written above, expansion of the process control theory is connected with the
improvements in the computer field but computer programs have been mainly used in the
last step of the simulation or control procedure. The modelling could be assigned as a
starting point of the simulation [7], [8] and [9]. The model of the process is a simplified
version of the real system and includes all variables and relations of the system which are
important for the investigation [10]. The mathematical and physical models are two main

types of models used nowadays.

The mathematical model is a kind of abstract representation of the process which
uses input, state or output variables, relations between these variables collected in the set
of mathematical equations — [4], [6]. The mathematical model is usually a set of linear or
nonlinear, normal or differential equations. A very important step in the mathematical

model creation is the decision which quantities are constant and introduction of
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simplifications. Processes generally, not only chemical processes, are often nonlinear and
mathematical description of all quantities and relations inside the process can lead to a
very intricate set of equations. Simplifications should reduce this complexity and ensure

mathematical solvability.

Mathematical solution of a mathematical model depends on the type of the model.
A linear or nonlinear set of ordinary equations is the simplest example of the solution — the
simple Gauss elimination method, Cramer’s rule, Inverse matrix or Least-squares method
could be used for numerical solution of this set of linear equations [11], [12]. On the other
hand, the Simple iterative method and its modifications like Newton method etc. [13] are

usually used for nonlinear equations [11].

Unfortunately, most of the systems in the nature, not only in chemical industry,
have nonlinear properties and they are described by the a of ordinary differential equations
(ODE) for systems with lumped parameters or partial differential equations (PDE) for
systems with distributed parameters [14]. The difficulty of finding the solution increases
with the nonlinearity and degree of the differential equations. A lot of numerical solution
methods have been developed, especially for the ODE, such as Euler’s method or Taylor’s
method [15]. Runge-Kutta’s methods are very popular because of their simplicity and easy
programmability [16]. Although this method was developed by German mathematicians
Carle David Tolmé Runge (1856 - 1927) and Martin Wilhelm Kutta (1867 - 1944) at the
very beginning of the 20" century, it is still very often used in numerical mathematics for
the solution of ODE. This method was being improved during the whole 20™ century,
which resulted in Runge-Kutta’s modifications, like the fourth order Runge-Kutta’s
method, Adaptive Runge-Kutta methods (Runge-Kutta-Fehlberg Method) [15] etc. An
other multistep method for numerical solution of ODE is the Predictor-Corrector method
[17]. The solution of PDE is more complicated because of the presence of usually two
types of derivatives — derivatives with respect to time and with respect to the space
variable. The set of PDE should be numerically solvable for example by the Bdcklund
transformation, Green's function, separation of variables or finite differences method [18].

It is clear that the solution of the PDE is very complex; one way how to overcome the
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derivative with respect to the space variable is to replace this derivative by difference in

time related to the time step and the set of PDE is then transformed to the set of ODE [19].

An indivisible part of the simulation study is steady-state analysis which discovers
the behaviour of the system in steady-state, i.e. in the time close to infinity.
Mathematically it means that derivatives with respect to time variable are equal to zero.
The set of ODE is transformed to the set of linear or nonlinear equations and the set of
PDE is now rewritten to the set of ODE with only one derivative with respect to the space
variable [19]. The resulted steady-state characteristics show mainly linear or nonlinear
behaviour of the system and they can be used for choosing the optimal working point. The
optimal working point means the value of the input (manipulated) variable for which the

steady-state value of the output variable reaches the maximum.

Once we know the static and dynamic behaviour of the process, we can continue
with the design of the controller. In the nearly 1940™ a lot of control techniques based on
the static and dynamic characteristics of the system were introduced — e.g. design of the
controller based on the step response of the system or Ziegler-Nichols method, Tyreus-
Luyben [20], which results in a Proportional (usually denoted as P), Proportional-Integral
(PI), Proportional-Derivative (PD) or Proportional-Integral-Derivative (PID) controller. A
disadvantage of these approaches is that the resulting controller has fixed parameters and
structure, which is not very suitable for nonlinear systems or systems with negative control
properties like time-delay systems, non-minimum phase systems of systems with changing

the sign of gain.

One way how to overcome the problems with nonlinearity or the negative control
properties in general is the use of the Adaptive control [21], [22] and [23]. As can been
seen from the term this approach is based on the quality of real organisms which can
change behaviour according to environmental conditions. This process is usually called

“adaptation”.

The beginning of adaptive control dates back to over fifty years ago, but a great
impact of the adaptive controllers appeared after 1989 with the publishing of the book by

Astrom [21] (this was reorganized and some new chapters were added to the second
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edition in 1994 [22]). In literature the adaptive controller is tightly connected with the self-
tuning controller. The self-tuning technique is subset of the adaptive control. The self-
tuning controller adapts its parameters at the beginning of the control or in some period
before the control starts and the structure is then fixed in contrast to pure adaptive
controller which recomputes and changes parameters or structure of the controller in every

step during control [24].

The adaptive approach in this work is based on choosing the external linear model
(ELM) as a mathematical representation of the originally nonlinear process whose
parameters are identified recursively during the control. The parameters of the controller
are recomputed recursively too, with the dependence on the identified parameters of the
ELM. The structure of this ELM could be derived from the dynamic behaviour of the

system and is usually represented by the transfer function.

The transfer function of the ELM can be defined in the continuous or discrete time
domain [20]. The continuous-time (CT) model [25] represents a system in continuous time
which can cause computational problems because the derivatives of the input and the
output variables used in the identification part are immeasurable. This inconvenience can
be overcome using differential filters [26]. On the other hand, discrete models have no
problems with measurements of the input and output variables because their values are
measured only in defined times distanced by the sampling period. The choice of the
sampling period can be a problem because a small sampling period means that the
computer does not have enough time to do all computation, a big sampling period, on the
other hand, can cause large dynamic changes inside the system which results in problems

for the controller.

A special type of the discrete models is Delta models (6&models) [27], [28].
Although they belong to the class of discrete models, the parameters are related to the
sampling period, and it was shown in [29] that these parameters are similar to the

continuous ones for a small value of the sampling period.

As written above, the parameters of the ELM are identified recursively during

control from the values of the input and output variables. The recursive identification is
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usually connected with the Least-squares method, which is rather old but on the other hand
it is simple and has still sufficient results. Several modifications of the Recursive Least-
squares (RLS) method have been developed, like RLS with exponential forgetting [30] and
[31], directional forgetting [32], adaptive directional forgetting [33] or the method with

modification of the covariance matrix [34].

An inseparable step in the identification is the design of identification model.
Identification models are divided from the error point of view into equation error models
(ARX, ARMAX, etc.) and output error models (OE, Box-Jenkins, etc.) [30]. The auto-
regressive exogenous (ARX) model is the most common used scheme because it is simple
and the output variable is a simple linear function of the measured data [35]. On the other
hand, the auto-regressive moving average exogenous (ARMAX) model consists in the
description of a prediction error and the computation of the output variable is made by
pseudolinear regression [36] because this output variable is a nonlinear function of the

measured data.

The mathematical description of the process and the controller by polynomials is
an algebraic method often used in the synthesis of the controller [37], [38]. This, so called
polynomial synthesis, works in the ring of polynomials and is derived from the input-
output model of the system or controller. The polynomial approach has some good
properties, such as it fullfiling basic control requirements (stability, properness) and it
provides not only the structure of the controller but also the relations for the computing of

the controller’s parameters. And last but not least, this method is easily programmable.

One of the demands on the controller is that it should be tunable. The polynomial
synthesis in this work results in solving of the Diophantine equation, or the set of equations,
which has an optional stable polynomial on the right side of the equation and the choice of
parameters of this polynomial affects the control response. The Pole-placement [38] (in
some literature called the Pole-assignment method) is one of the methods used in this case.
The placement of roots is sometimes difficult and there is no rule how to choose the right
pole. It is good to connect the stable polynomial with the parameters of the controlled
system or ELM, respectively for example with the spectral factorization [39]. The Linear

Quadratic (LQ) approach is the second possible way for designing the stable polynomial
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on the right side of the Diophantine equation [26]. The LQ is based on the minimizing of

the cost function.

Another possibility how to influence the quality of the control is to use different
control configurations. The first configuration has a controller in the feedback part and is
called a one-degree-of-freedom (1DOF) control configuration [40]. It was proofed in [41]
that a two-degree-of-freedom configuration (2DOF), which has one part of the controller in
the feedback and the other in the feedforward part, has better control results, especially at
the beginning of the control, than the basic 1DOF configuration.

The simulation results for different types of nonlinear models [26], [42] and [43]
have shown that the adaptive controllers connected with polynomial methods can be
applied on systems with negative control properties, such as instability, non-minimum
phase or on systems with transport delays because they fulfill basic control requirements,
such as stability, properness, asymptotic tracking of the reference or disturbance

attenuation.

The last years of the 20" century and the beginning of the 21% century are in token
of developing “modern control methods” like Adaptive control [21], [22], Predictive
control [44], [45], [46] and [47], Model predictive control [48], [49] and [50], Robust

control [51] or application of neural networks and Artificial Intelligence [52].
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2 DISSERTATION GOALS

The aim of this dissertation is to apply and verify some novel control methods to
chemical reactors. Verifications are done by simulation on a mathematical model in the

computer and some methods are then applied on a real chemical reactor.

It is impossible to include all modern control methods so in this work I choose
several of them which have preferably general description, are easily programmable and do

not depend on the computation power of computer.

The goals of the present work can be summarized in the following points:

1. To perform static and dynamic analyses of different types of stirred reactors

and tubular reactor.

2. To prepare different modern control algorithms to control these chemical

reactors and verify these algorithms by simulation.

3. To verify the proposed controllers from the simulation part on a real model of

the continuous stirred tank reactor (CSTR).
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3 THEORETICAL FRAMEWORK

The theoretical part is mainly focused on the description of the theoretical
background of the modelling, simulation, static and dynamic analyses, adaptive and

predictive control.

3.1 Modeling and Simulation

It is common for the industrial processes that they are considered as “black boxes”
which means that we do not know internal structure of the system, but only input-output
measurements are at our disposal. Simulation is one way how we can overcome this
internal uncertainty. From the input-output measurements we can obtain properties of the
system in the mathematical terms like differential equations, transfer functions, step or

impulse functions etc. [20]

3.1.1 Types of Systems

It will be good to describe basic types of systems before we start with the

modelling, identification and simulation of them.

There are several types of systems. The first division is into the linear and
nonlinear systems. Relations between variables inside the model are described by the linear

functions while nonlinear models have the relations from the range of nonlinear functions.

Systems where state variables are position independent are called systems with
lumped parameters; unlike systems with distributed parameters where state variables are

functions of time and space variable.

Variables in the continuous-time systems are defined in the continuous time
interval unlike in discrete-time systems where one of the quantities is specified in the

discrete time.

Deterministic systems are those whose actual output is derived from the previous

state and the input variable while the state of the system should be defined only with some
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probability in stochastic systems. Uncertainty of these systems is caused as an effect of the

random signals in the output of the system.

Next divisions are stationary (time-invariant) systems where variables do not
depend on time unlike in nonstationary (time-variant) systems. The single-input single-
output (SISO) system has only one input and one output whereas systems with more than
one signal on the input or output like single-input multiple-output (SIMO) systems,
multiple-input single-output (MISO) systems and multiple-input multiple-output (MIMO)

systems belongs to the class of multivariable systems.

3.1.2 Modelling

There are two main types of the models — physical (real) models and abstract
models. The real model is represented by the copy of the system, usually small or similar
to the original one. On the other hand, the mathematical model is usually used as an

abstract model of the system.

As is written above, modelling and simulation are the first steps in the design of
the controller. Two approaches should be used in the modelling part. The first method
collects measurement results of input and output variables. The resulted model is called
input-output model and the method is named empiric approach. Disadvantage of this
model is that it describes only relation between the input and the output variable and does

not give any information of the system’s structure.

Process is usually described by various types of quantities like temperature,
pressure, flow rate, concentration etc. which describe the process from the mathematical
point of view. These quantities are called state variables and relations between them are
used for the second method — the analytic approach. The resulted analytic (or more
common used “mathematical”) model describes these inner variables, relations between
them and we can imagine it as a set of linear, nonlinear, ordinary differential equations

(ODE) and a set of partial differential equations (PDE).
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The mathematical model is only abstract approximation of the real system which is
very complex or partly misunderstood [4]. Thus models do not strictly describe all the
properties and relations inside the system, but pick up the most important ones and
introduce constants and simplifications. It is required that mathematical model describe
real system in the proper way and moreover it is in the simplest one from the range of
available models. To find compromise between these two claims is the most important part

of modelling.

Define strategy,
goals, information Modelling
collecting

Dynamic
system

A

Control strategy
and design

Simulation,
validation

Model for

control

Figure 3.1 General modelling procedure

Figure 3.1 shows the main stages in the modelling procedure. First we start with
the definition of goals and requirements and general description of the system, usually

dynamical system.

The next step is connected with collecting all available knowledge of the system.
This work needs deeper knowledge about the background of the system, its behaviour,
reactions and chemical process inside of it etc. It is common that this work means the

exchange of the experience with the industry.

The most important relations are then put together in mathematical model which is
then simulated by the computer. Validity of the model is checked by the comparison with
the results of the experiments on the real model. If the results agree sufficiently we can use
this model for mathematical simulation. It is common that convenience of the model is

revised in predefined intervals.

The last steps are related to choosing of the control strategy and design of the

controller.

-30-



MATHEMATICAL BALANCES

The mathematical model of the system usually comes from mathematical balances
inside the reactor. They include kinetic equations for rates of the chemical reactions, heat
rates, heat transfers and equations which represents property changes. The resulted model
should be the simplest one but unfortunately it is very complex. In this case we must
introduce assumptions which decrease complexity of the model but preserve the most

important relations.

Material balance

Material balance in the steady-state can be generally described in the word form as

Mass flow of Mass flow of the
the component | = |component out of
into the system the system

However, most of the variables vary in time and steady-state balance is not
suitable. We can introduce dynamic material balance which contains changes with respect

to time in the form of accumulation

Mass flow of Mass flow of the Rate of
the component | = |component out of | 4-| accumalation of
into the system the system mass in the system

Some of the processes include chemical reactions. Material balance is in this case

Mass flow of Mass flow of the Rate of Rate of production
the component | = |component out of | 4| accumalation of | .| of the component
into the system the system mass in the system by the reacton
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Heat balance

Heat balance is usually the second type of balances used in modelling procedure.
Temperature changes are usually caused by the reaction heat or cooling. This must be
mentioned in case where heat changes inside the system are significant. The word form of

this balance is

Heat
accumulated
inside

Heat arrised
+ | during the
reaction

Heat in the
output flow

Heat in the

input flow

Heat transfered
from or into the
surrounds

Mathematical description

The nonlinear time-invariant systems with lumped parameters are generally

described by the set:

3.1)

where x(f) = [x1(2), x(),... xo(£)]" is the state vector, u(t) = [ui(?), ux(?),... um(®)]"
denotes the input vector, f = [fi, f5.... fo]' and g = [g1, &,... g.]" are nonlinear vector

functions.

Once the mathematical model is constructed, it is important to define its conditions.
Each state variable needs as many conditions as is the highest order of the derivative

related to the independent variable in differential equations.

The system described by the set (3.1) has initial condition

x(0)=x; (3.2)
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which are obtained from the steady-state analysis described later.

On the other hand, one part of systems with distributed parameters with ideal plug-
flow inside have the mathematical model in the form of PDE. The equation which
describes one of the state variables could be

Ox(z,t) 62x(z,t) Gx(z,t

= —-a . +v = )=f[x(z,t),u(z,t)} 3.3)

where z is space variable, ¢ denotes time, a and v are constants and f'is nonlinear
function. In this case we need not only initial conditions but boundary conditions too, in

this case:
x(0,8)=u’(t) or x(L,t)=u"(¢) 3.4)

where °(7) and u*(¢) are called boundary input variables.

The second part with the squared derivative with respect to space variable
(azx(t,z)/ 0z*) usually deal with longitudinal diffusion, heat conduction or longitudinal

interfusion etc. and this part is often neglected due to small values of elements of the

constant a.

The boundary conditions can be written as

—x)| =0 (3.5)

where a, 8 > 0 are constants and u°(f), u*(¢) are again boundary input variables.

If we set oy = o = 0, eq. (3.5) is called the first type of boundary condition.
Furthermore, £ = £ = 0 results in the second type of boundary condition and for non-zero
a and fwe obtain the third type of boundary condition. The mixed boundary condition is
obtained in the case where we have different types of conditions on the right and left side
of the reactor. Boundary conditions must be chosen according to physical properties of the

process.
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The initial condition for both cases is
x(z,0)=x"(2) (3.6)

where x*(z) comes from steady-state, i.e. for ODE where derivations are only with

respect to space variable z and all boundary and input variables are in steady-state too.

3.1.3 Steady-state Analysis

Analyses inside the reactor are the next step after the developing of the
mathematical model, initial and boundary conditions. There were used steady-state and
dynamic analysis to obtain information about the type and behaviour of the system.
Steady-state analysis results in optimal working point while the product of dynamic

analysis could be step, frequency etc. responses.

Steady-state analysis for stable systems involves computing values of state
variables in time ¢ = oo, when changes of these variables are equal to zero. That means that

all equations which consist of derivations with respect to zero have these derivations equal

to zero, 1.€.

a()

B W 3.7
= (3.7)

There are many methods for solving of this problem. If the system is linear, the set
of differential equations can be rewritten to the set of linear equations which can be solved
by general, well known methods like matrix-inversion, Gauss elimination etc. or with the
use of some types of iterative methods. However, the most of the processes are nonlinear
which leads us to the set of nonlinear equations. Despite the fact that there is a possibility

of the analytical solution, iterative methods are used more often.

The other possibility is the simple iterative method [6] which is often used for

defined form of the equations. This method leads to the exact solution for appropriate
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choice of initial iteration and for the fulfilled convergence condition. Its advantage is that it
does not need special modifications and side calculations according to other iterative
methods like Newton’s method etc. Although this method converges slower than Newton’s
method, this disadvantage is unimportant nowadays, when the speed of computers is very
high. This method will be used for solving of a steady-state.

The simple iterative method

Consider nonlinear system in the for of state equation similar as in Equation (3.1)
x(t)=fx(t).u(1)] (3.8)
with initial condition
x(O) =x' (3.9)
The vector of input variables is

x =[x (3.10)

Components of this vector are unknown and they could be computed by solving of

equations of the model in steady-state:
f:(x“"us):() (311)

where ' = [u)’, us’,... uy']" is vector of assigned (known) input variables which
comes from basic steady-state. Unknown variables in the equation (3.11) are components
of the state vector x°, which creates n state variables in basic steady-state. This basic
steady-state is called working point of the system and surrounding of this point is used for

dynamic analysis of the system (3.8).

Computation of the initial conditions x* is for nonlinear system important not only

for computation of the dynamics but also it is used for creating of a linearized
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mathematical model of the process in working point. It is known that parameters of this

model depend on values of state variables in the working point.

Equation (3.11) can be now rewritten to
f(x)=0 (3.12)

for unknown values of x; fori =1,2,...n.
Next step in the solution is following. The equivalent set of equations to the set
(3.12) is

x=¢(x) (3.13)

where ¢ is nonlinear vector function ¢ = [¢y, ¢»,... ¢,]" and which leads to iterative

equation in the form of
xk =¢(xk) for k=0,1, ... (3.14)

The iterative method leads to the exact solution only if it converges. The

convergence condition of the iterative process (3.14) then can be formulated as follows:

Let the vector function ¢ is defined in the closed convex region D — R" and if

xeD so @eD too. Moreover, let functions ¢ has continuous partial differential

derivations of all variables x, +x, in the region D, then there exists matrix

o dp . da

dx, dx, dx,

dp dp, dp,  do,
¢'(x)=;= dx, dx, dx, (3.15)

do, do,  dg,

dx, dx, dx,
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If matrix (3.15) complete condition ||¢'(x)|| <1 for any x € D, there are only one
solution x" € D of the equation (3.14).

There could be of course thousands of iterations during the computation but from
practical point of view is convenient to stop the computation in the case that difference
between values of actual and previous iteration is sufficiently small, i.e. condition

(3.16)

ss

e

is fulfilled for accuracy &, > 0, value of which depends on supposed absolute

dimension of computed variables.

It is important to introduce following remarks in addition to the previous

conditions:

e This method can be used for cases where steady-state model (3.11) includes linear
part besides nonlinear part. Linear part is necessary for creation of a equivalent set
(3.13). The iterative equation of the heat transfer balance includes both linear part

for heat transfer and nonlinear part computed from Arrhenius law.

e The input iteration should be selected from the convergence region of the iterative
process. The temperature inside of the reactor is supposed to by higher than the
temperature of the input flow. Therefore it is convenient to set the input iteration

equal to this temperature.

3.1.4 Dynamic Analysis

Dynamic analysis is usually the next step after the steady-state analysis. Dynamic
analysis for systems with lumped parameters is mainly focused on the numerical solving of
the set of ODE described as (3.8). There are a lot of methods which can be used for
numerical solving of this problem. General division is into the two main groups — one-step

and multi-step methods.
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We supposed the general differential equation be in the form of (3.1)
t)=g[x(t).u(1)] (3.17)
with the initial condition

y(t) =y (3.18)

which is called Cauchy Problem [30].

Although there are a lot of methods for solution of ODE, the popular Runge-
Kutta's standard method was used in this work. This method is very often used in the
praxis because of its simplicity. Runge-Kutta's methods belong to the class of high-order
methods, they can be used for computation of the initial values or for the final result and
they are easily programmable. The fourth-order Runge Kutta's method is one of the most

used types [6] and [12]. This method uses first four parts of the Taylor's series:

|
y(k+1)=y(k)+—-(g +28, +28: +2,) (3.19)

where coefficients g4 are computed from:

=h - ( n,y X,
=h-f (x h’ &j
2 2 (3.20)
=h-f (x h’ &j
2 2
=h-f (xn+hl,y +g3)

The Runge-Kutta's methods are in some cases build-in functions in mathematical
softwares. For example in MATLAB, which is used for simulation in this work, are
Runge-Kutta's methods in functions ode23 (the second order Runge-Kutta formula) or
ode45 (the fourth order Runge-Kutta's formula described above) [53]. One of advantages

of these methods is that they have flexible integration step /4;, which recomputes every step
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according to the actual computation error. The standart Runge-Kutta method has a several

modifications like Runge-Kutta-Fehlberk method, Runge-Kutta-Nystrém method etc [54].

As it is mentioned above, systems with distributed parameters are usually
described by the set of PDE. Direct numerical solving of the PDEs is very complex. Some
PDE can be solved with the use of Bdcklund transformation, Green's function, separation
of variables or some numerical methods such as finite elements. The method of finite
differences was used in this work. This method transforms the set of PDE to the set of
ODE. This can be done by replacing the variables with respect to the axial variable z by the
first back or forward difference [19]:

% zM,forzf 1,2,...n (3.21)
z

z=z; z

dy| _y(i+1)-»()
dz

Q

,forj=n-1,n-2...,1 (3.22)

z=z; z

where i, j are indexes, n is number of pieces and /4, is discretization step.

3.2 Identification and Control

Most processes in the nature, not only in chemical industry have nonlinear
properties and the use of classical controllers with fixed parameters could result in non-

optimal control because of changing parameters of the system.

The use of the “modern” control methods is one way how to overcome this
problem. The adaptive and the predictive control were used as a control approaches in this

work.

3.2.1 Adaptive Control

The basic idea of adaptive control is that parameters or the structure of the

controller are adapted to parameters of the controlled plant according to the selected
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criterion [33]. Adaptation can be done for example by the modification of the controller's
parameters by the change of the controller’s structure or by generating an appropriate input

signal, which is called “adaptation by the input signal”.

In some references the adaptive system is called self-tuning system which is
formally subset of the adaptive systems. As written in [24], an adaptive controller is a
system with continuous (recursive) adaptation of the parameters while a self-tuning
controller adapts parameters only at the beginning of the control and the computation

mechanism is switched off.

The adaptive approach in this work is based on choosing an external linear model
(ELM) of the original nonlinear system whose parameters are recursively identified during
the control. Parameters of the resulted continuous controller are recomputed in every step

from the estimated parameters of the ELM.

EXTERNAL LINEAR MODELS

The main types of ELM are continuous-time (CT) models and discrete-time

models. Both models are described in detail in the following chapters.

Continuous-time EILM

This approach is based on continuous-time theory described for example in [25].

Models are generally described in the time domain as
a(o)y(t) =b(o)u(t) (3.23)

where a, b are polynomials of the system, y(f) is output variable, u(¢) denotes input

variable and o is the differentiation operator. The initial conditions for Equation (3.23) are

y(()i)’ i:051525'~'an fOI' I’l=dega
u(f)(O)zu(()j)’ j=0,1,2,....m for m=degh

E/-\
—
)
N—
I

(3.24)
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and Equation (3.23) can be rewritten with the initial conditions equal to zero and

with application of the Laplace transformation to the form:
a(s)Y(s)=b(s)U(s)+o0,(s) (3.25)

where s denotes complex variable, polynomial o, includes initial conditions and

polynomials a(s) and b(s) are

dega ) degb )
a(s)=Y a,s',b(s)= Y b,s’ (3.26)
i=0 j=0

Transfer function G(s) for the initial conditions equal to zero is:

G(s)= Y(s) _b(s) (3.27)

Discrete (Z-) ELM

As already said, there is a problem with setting of the polynomial c(s) in
Equation (3.31). One solution to this problem is to use of discrete models. These models
have, however, one disadvantage; discrete shifting operator ¢ in the general description

q-x(k)=x(k+1) (3.28)

is not equivalent to the continuous time operator [55].

Discrete models are used in the cases where the usage of continuous ones is
complicated or the realization is impossible. An important variable in the discrete-time
models is sampling period T,. The selection of the sampling period is intuitive and there is
no general rule for this choice, but one suggestion is to take it from eigt to twelve samples
for the active part of the step response. An active part of the step response is a time interval

in which the output variable reaches 95% of the steady-state value.

We can generally say that a sufficient number of samples for the description of the

step response is a good way for selection of the root. Another limitation is of course the
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use of hardware. We cannot take sampling period lower than sampling period of the

counters and timers.

The transfer function G in this case is defined as Z-transform of the output variable

v to the input variable u

_Y(2) _b(2) _b,2"+b,, 2"+ bz b,
U(z) a(z) az"+a,_z""+...+az+aq,

G(z)

(3.29)

where a(z) and b(z) are discrete polynomials and U(z) and Y(z) are Z-transform

images of the input and output variables.
It is more common that the polynomials are in negative powers of the complex
variable z, which means that we divide Equation (3.29) by the highest power of z. The

condition of the strict properness says that dega(z) > degb(z) , L.e. n>m and equation

(3.29) is divided by 2":

W YEY B(FY) bbb by
G(Z )_ U(z") - a(z’l) o, Jra,H;’1 +...+alzl”1 +aoz‘”O (3:30)

This model was mentioned only for the complementarity and it is not used later in

the practical part.

ELM PARAMETERS IDENTIFICATION

The use of the discrete model for nonlinear system can cause problems with the
sampling period 7. This sampling period cannot be small because of the stability and the
big sampling period is unacceptable because we do not know what will happen with the

system during this sample.

The continuous-time ELM with the use of differential filters and 6-models were

used for the identification in this work.
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Continuous-time ELM

Equation (3.23) means a problem from the identification point of view because of
the derivatives of the input and output variables which are immeasurable. However, these

derivations can be replaced by the filtered ones, y,and u;, computed from

c(o)u, (1) =u(?)

(3.31)
c(o)y, ()= y()

where c(0) is stable polynomial in ¢, which fulfils condition degc(O') >dega (0') .

Laplace transformation of Equation (3.31) is then

c(s)U,(s) =U(s) +0,(s)

(3.32)
e(5)Y,(5) =Y (5) + 0, ()

where 0, and o; are polynomials which include initial conditions of the filtered

variables. Substitution of Equation (3.32) into Equation (3.25) results in

Y_As)zii—iiU_,(s)+‘I’(s) (3.33)

and ¥(s) is rational function in s which contains initial variables of filtered and

unfiltered variables.

It is known [26] that dynamics of the filter in Equation (3.31) must be faster than
dynamics of the controlled process. The initial choice of polynomial ¢(s) is connected with
the knowledge of the system. One possibility is to choose parameters of ¢(s) apriory small.

If we take the values of the filtered variables in the discrete time moment ¢, =k -T,

for £ = 0,1,2,... where T, is sampling period, the regression vector for deg ¢ = n and

degb=mis

T
¢(tk ) :[_yf (tk)ryA(;) (tk )7“"_)’?71) (tk )’”f (tk )’”y) (tk )"'W”;'m) (tk )’1] (3-34)



and the vector of parameters is
T
0(1.)=[ay.a,....a,.,b,,b,,...,b,] (3.35)

The parameters of polynomials a(s) and b(s) are estimated recursively in discrete

time moments from equation
W(5)=6" (1) @(1)+¥(1,) (3.36)

Delta (6-) ELM

Although the delta operator belongs to the class of discrete models with the

operator described in Equation (3.28), it can been seen from

s=4-1 (3.37)

that this operator is related to sampling period 7, and it means that &~models are

close to the continuous ones in d /dt.
Now, a new complex variable in “0” plane called “y’, which is defined for

example in [56] as

z—1

T BT z+(1-B) T,

y (3.38)

We can obtain an infinite number of d—-models for different values of optional

parameter S in Equation (3.38) from the range 0 < 5 <1.

There are several commonly used 6~models [33]:

for f=0:y = ZT_I forward Smodel (3.39)

v
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y4

for f=1: y = ;Tl backward S-model (3.40)

v

2z
for f=0.5: y=—
P 4 T z+1

v

Tustin’s &-model (3.41)

The forward 5-model described by Equation (3.39) is dealt with in this work. If we
have general output function y(¢), the approximation of its first derivation by the first

difference is dy(f) and the relation between differentiation operator o and s-operator is [43]

;111})5 =0 (3.42)
and the continuous model (3.23) must be rewritten to the form
a'(8)y () =b'(8)u(r) (3.43)

where polynomials a’(§ ), b'(§ ) are discrete polynomials and their coefficients are

different from those of the CT model a(s) and b(s). Time ¢' is discrete time.

Now we can introduce substitution ' =k —n for k>n and Equation (3.43) then

will be

O"y(k—n)=>b 6" u(k —n)+...+b/ou(k —n)+byu(k —n)—

S , ' (3.44)
—a, 0" y(k—n)—..—a/0y(k—n)—a,y(k—n)
Individual elements are
l. L=/ (i .. .
S'yk—ny=Y——| |yk—n+i-j),fori=0,1,...n (3.45)
= T, J
1 : (_1)‘/ l .
Stutk—n)=>" b u(k—n+1-j), forl=01,...,m (3.46)
j=0 1ty
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The individual parts in Equation (3.44) can be written as

Vs (R)=8"y(k—n),  uy(k—n+m)=8"u(k—n),
y(k=1)=8""y(k—n), us(k—n+m—1)y=05""u(k—n),

: : (3.47)
vstk=n+1)=06y(k—n) u;(k—n+1)=0u(k—n),
Volk=my=y(k—n)  u,(k—n)=u(k—n)

and the regression vector is

os(k—1)= [_yﬁ(k =D,...,=ys(k—n+1),—ys(k—n), (3.48)

uz;(k+m—n),ug (k+m—l—n),...,ué(k—n+1),u5(k—n)]r '

The vector of parameters

6, (k)=[a, ,,.nalsap, bbbl B} (3.49)
is then computed from the differential equation

V5 (k) =67 (k) -, (k~1)+e(k) (3.50)

where e(k) is again a general random immeasurable component.

It was proofed for example in [29] that estimated parameters of the &~model are

very close to the CT ones for small values of the sampling period, 7.

ARX identification model (Auto-Regressive eXogenous)

The identification models can be generally divided into two main groups [30] —
equation error models (ARX, ARMAX etc.) and output error models (OE, Box-Jenkins,
FIR etc.). In this work is used ARX model for the identification although the difference
between ARX and ARMAX model was verified for example in [63].
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If we consider general linear difference equation
y(k)+aly(k—1)+...+any(k—n)=b0u(k)+b1u(k—1)+...+bmu(k—m)+e(k) 3.51)

where coefficients a,., and by, are parameters of the ELM estimated from the
identification and n = deg a, m = deg b, u(¢) is a input variable and e(¢) is stochastic part,
for example the effect of immeasurable disturbances. Equation (3.51) can be rewritten as a

relation for the estimated output variable )3(1‘) in each step
P(k)=—ay(k=1)-...—a,y,(k—n)+bu(k)+bu(k—1)+...+bu(k—m)+e(k) (3.52)
and if we introduce general vector of parameters @ and data vector ¢

0=[a,.....a, by...b, |

>y,

(3.53)
o(k)=[~y(k=1)sco=y(k—n)su(k)su(k-1),...u(k—m)]
the difference equation (3.51) can be rewritten to vector form:
y(k)=6"-g(k)+e(k) (3.54)

The ARX model is very often used because the data vector consists only of
variables which can be directly measured and there is no need to reconstruct them. The
deterministic part can be optional, the estimated output variable is linear function of the

measured data and a linear regression can be used for parameter estimation [35].

Recursive Least Squares (RLS) Method and Modifications

The RLS method is often used at adaptive control for on-line identification of the

system's parameters. Parameters are recomputed recursively in time — if we know the

estimated parameters in the previous step é(k—l), new estimation é(k) is obtained by
the modification of (k —1). One big advantage of RLS methods is that they do not need
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to store all data, which is good for the computer memory. They can be easily modified for

e.g. changing data in time.

The RLS method can be formally expressed by the following set of equations:

e(k)=y(k)-@" (k)-6(k-1) (3.:55)
7(k)=[1+9" (k)-(k=1)-0(k)]" (3.56)
L(k)=7(k)-P(k-1)-p(k) (3.57)
P(k)=P(k=1)=y(k)-P(k-1)-p(k)-@" (k)-P(k-1) (3.58)
O(k)=6(k-1)+ L(k)e (k) (3.59)

where ¢ is prediction error and P is covariance matrix.

The standard RLS can be modified with the use of the forgetting factor. As shown

in [30], covariance matrix is updated by equation

P (k)=P "' (k-1)+o(k) o (k) (3.60)
which can be generalized to

P (k)= 4 (k=1) P (k=1)+ 4, (k1) -9 (k)-9" (k) (3.61)

where A; and A, are factors which affect covariance matrix P. These factors are

from the range of 0<A4 <1, 0<A <2 and have an opposite effect — A, increases

covariance matrix P whereas A, decreases it.

Recursive relation (3.58) for computing of covariance matrix P is then modified to

the form
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P(k-1)-@(k)-@" (k)-P(k-1)
(k-1

Mk_l))wf(k).P(k_l).q,(k)

(3.62)

Modifications of the RLS methods differ for different values of A.

A) Decreasing gain: if Ay = A, = 1, the gain is decreasing and covariance matrix

increases. This method can be used for stationary systems.

B) Constant exponential forgetting is for 4; < 1 and A, = 1. The values of
forgetting factor A, are from the range <0.95; 0.99>. Parameter 4, influences gradual
forgetting of the old values and the most weight is put on the last values. This relation can

be described by criterion
k .

J=> e (3.63)
i=1

This algorithm can be used for systems with changing parameters.

C) Increasing exponential forgetting has forgetting parameters 4, = 1 and 4, is

computed from
A (k)= A4 (k=1)+1-4, (3.64)

Typical values of the forgetting parameters are A, (0) =] € <O.95,0.99> . The value

of this forgetting factor is asymptotically approaching to 1, which means that the old data
is forgotten. This can be used for stationary systems because it prevents gain from very
quick decreasing at the beginning of identification and results in quick convergence for

estimations which are far from the optimal ones.

D) Changing exponential forgetting has again the value of forgetting parameter

A» =1 and exponential forgetting 4, is recomputed in every step as

A (k)=1-K-y(k)-&* (k) (3.65)
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where K is a very small value (e.g. 0.001).

E) Directional forgetting. Modifications of the RLS method with exponential
forgetting described above have one big disadvantage. If the time interval between the old
and new information is very high, it can happen that covariance matrix P becomes
semidefinite and the algorithm collapses. Estimation with directional forgetting [32] was
made especially to stabilize of this problem. This algorithm forgets information only in the
direction from which it comes. General description of this method can be formulated by

the following equations:

F(k-1)=¢" (k)-P(k-1)-g(k) (3.66)
L(’fF% (3.67)

1= 4 (k-1)
Blk-1)= A (k—=1)- = pror(k—1)>0 (3.68)

1 pror(k—1)=0

_P(k=1)-@(k)- 9" (k)-P(k-1)
B (k=1)+r(k-1)

P(k)=P(k-1) (3.69)

where A; can be chosen similarly as in exponential forgetting.

F) Recursive identification with directional forgetting was modified in [33] to the

RLS adaptive directional forgetting.

The description of this RLS method is similar to the previous case. The value of
adaptive directional forgetting A, is calculated for each sampling period according to

relation

2 (k=-1)= {1+(1+p,-)[1n(1+r(k—1))} ¥ Ei(f(;l_)lg?%:g —1}1:(:;]:)1)} (3.70)
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where

i :éz(k);
n(k) )

_ _ . _ 3 & (k-1
(k) = 2, (D[ (k-1 +1]; (k) A(k){i((k 1)+—1+r(k_1)} (3.71)

are auxiliary variables. The starting values for this method can be /1](0)=1 ,

x(0)=0.001, v(0)=10", p,=0.99.

The choice of the apriory information for the identification has in some cases a big
importance for adaptive control results because the initial estimate of the parameters must
represent real behaviour of the system. A bad first shot can result in wrong incialization of

the controller and non-optimal responses.

POLYNOMIAL CONTROL SYSTEM SYNTHESIS

The polynomial synthesis [37] and [38] is one of the methods used in adaptive
control for control synthesis of the system. This method is based on the input-output model
of the controlled system or its transfer function. It can be classified as an algebraic method
and is based on algebraic operations in the ring of polynomials. Polynomials are usually
described in s-plane for continuous systems, in z-plane for discrete systems and in &-plane
for systems which come from &models of both the controlled system and the controller

too ([55] and [56]).

One of the biggest advantages of the polynomial method compared to the
conventional method is that it provides not only relations for computing of the controller's
parameters but the structure of the controller too. This structure fulfils general
requirements for control systems and input signals (reference signal and disturbance) and it
can be used for controlling of the systems with negative properties from the control point
of view, such as non-minimum phase systems or unstable systems. Another advantage is

that the resulted relations are easily programmable.
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Polynomials in the numerator and denominator of the transfer function of the
controller result from the solution of Diophantine equations, which have so called
characteristic polynomial of the closed loop system on the right side of the equation. The
roots of this polynomial are then poles of the closed-loop system, which affects the quality
of control. The method of choosing the poles is called Pole-placement or Pole-assignment

[38].

The polynomial method can be used not only for the configuration with the
feedback controller (1IDOF configuration) but for configurations with the feedforward

controller too (2DOF, 24DOF etc.) [40].

Basic Control Requirements

The basic control requirements are defined in the following items:

A) Bounded Input-Bounded Output (BIBO) stability means that a system is BIBO
stable if the bounded input results in a bounded output response [14]. This definition is not
very suitable for closed-loop control systems where we examine not the only outer stability
but also inner stability. [t means that not only input and output signals must be bounded but
signals inside the systems must be bounded too for BIBO stability of the closed-loop

control system [57].

B) Inner properness of the control system is fulfilled if all elements are proper, i.e.
degrees of denominators of transfer functions are equal or grater than numerators. The

system with transfer function

G(s)= b(s) (3.72)

is:
proper if dega(s) > degb(s)

strictly proper if dega (s) > degb(s)
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non-strictly proper if dega (S) =degb (s)

C) Asymptotic tracking of the reference signal means that the control error
approaches to zero for infinite time. The output variable then asymptotically tracks
reference signal (wanted value), i.e.
1ime(t)=0 (3.73)
t—©

D) Disturbance attenuation is the last control requirement. There are usually

several disturbances which affect the control system and our goal is to suppress these

negative influences to fulfil condition (3.73).

IDOF Control System Configuration

As already written, there are several types of control system configurations. The
first one is configuration with one degree-of-freedom (1DOF) displayed on Figure 3.2.
This combination has a controller only in the feedback part and control disturbance e(?) is

assigned as an input variable to this controller.

Figure 3.2 One degree-of-freedom (1DOF) control system configuration

Block Q in Figure 3.2 represents the transfer function of the controller, G denotes
the transfer function of the plant, w is the reference signal, e is used for the control error, v
is the disturbance at the input to the system, u determines the input variable, and finally y is

the output variable.

The transfer function of the controlled system in complex s-plane can be described

similar by to Equation (3.72). Polynomials a(s) and b(s) are commensurable polynomials
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in complex s-plane. The realizability condition is fulfilled if the system is proper,

i.e.dega(s)>degb(s).

The transfer function of the controller then is

O(s)= a(s) (3.74)

where polynomials p(s) and ¢(s) are again commensurable polynomials, and the

condition of properness in this case is deg p(s)>degg(s).

Transfer functions of the reference signal W(s) and disturbance V(s) are

W (s)= 5(5) g V(s)= () (3.75)

(s

=~

where the degrees of polynomials in denominators and numerators are again based

on the condition of properness: deg f, (s)>degh, (s)and deg f,(s)>degh, (s).

The reference signal W(s) and disturbances V(s) are chosen from the range of step

functions, which means that polynomials in denominators are f,, = f, ==.

The relation for the Laplace transform of the output variable ¥(s) can be obtained

from the transfer function of the system G(s):

6(s)=2) v (5)=6(s)-U (s) (3.76)

where U(s) from Figure 3.2 is
U(s) = Q(s) . E(s) + V(s) = Q(s) . [W(s) - Y(S):| + V(s) (3.77)

This relation together with polynomials a(s), b(s), p(s) and ¢(s) instead of Laplace
transforms G(s) and Q(s) inserted into Equation (3.76) results in
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W (5)+ a(s)p(s) )-V(s) (3.78)

Denominators for both parts have the same form. This polynomial is called

characteristic polynomial of the closed loop and it can be assigned in one polynomial
a(s)p(s)+b(s)q(s)=d(s) 3.79)

The stability of the system is fulfilled by the feedback part of the controller with
transfer function QO(s) [38], where polynomials p(s) and g¢(s) are computed from
Diophantine equation (3.79). The stability of the system is obtained for a stable polynomial
d(s) on the right side.

Asymptotic tracking of the reference signal is attained if polynomial p(s) in the
denominator of Equation (3.74) includes least common divisor of polynomials f,(s) and

£,(s). This can be obtained for polynomial p(s) rewritten to form
p(s)=/(s) p(s) (3.80)

where f(s) is the least common divisor mentioned above. This polynomial is

f(s) =fu(s) =f(s) = s for signals from the range of step functions.

Diophantine equation (3.79) is then
a(s) £ (s)p(s)+b(s)q(s)=d(s) (3.81)

and the transfer function of the controller is
~ ql(s
O(s)= _als) (3.82)

Polynomials a(s) and b(s) in Diophantine equation (3.81) are known from

identification. Our task is to find coefficients of polynomials ¢(s) and ﬁ(s) The method
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of uncertain coefficients which compares coefficients of individual s-powers can be used

for computing of parameters of polynomials p(s) and g(s).

Inner properness conditions must be fulfilled, i.e. dega(s)zdegb(s) and

deg p(s)>deggq(s)and because

deg(a(s)- £ (s)- p(s))=deg(b(s)-q(s)) (3.83)
the degree of polynomial d(s) is then

degd (s)=deg(a(s) f(s) p(s))=dega(s)+deg f(s)+degp(s) (3.84)
The number of unknown parameters in (3.81) is

deg p(s)+degq(s)+2 (3.85)
and the number of equations is then

degd(s)+1=dega(s)+deg f(s)+degp(s)+1 (3.86)

The number of unknown parameters must be equal to the number of equations and

therefore

dega(s)+deg f(s)+deg p(s)+1=degp(s)+degg(s)+2=

3degq(s)=dega(s)+degf(s)_1 (3.87)

The properness condition is deg p(s)>degg(s), it means that

deg p(s)=deg f(s)p(s)=deg f(s)+deg p(s)=degq(s)
deg f'(s)+deg p(s)>dega(s)+deg f(s)-1= (3.88)
:degﬁ(s)zdega(s)—l
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2DOF Control System Configuration

The configuration with two degrees-of-freedom (2DOF) has a controller divided
into two main parts — the feedback segment with the transfer function Q(s), which has
output variable y(¢) on the input and the feedforward segment with transfer function R(s) —

see Figure 3.3.

Figure 3.3 Two degrees-of-freedom (2DOF) control system configuration

This part has reference signal w(#) on the input. We can say that this controller has
two inputs (output variable y(f) and reference signal w(¢)) and one output from the

controller, u(f).

Transfer functions of both parts are

0(s)= als). R(s)= r(s) (3.89)

where polynomials p(s), ¢(s) and r(s) are complex s-plane, and properness

conditions are deg p(s)>degqg(s)and deg p(s)>degr(s).

Laplace transform of the input variable U(s) is computed from Figure 3.3.
U(s)=R(s)W(s)—Q(s)Y(s)+V(s) (3.90)

and if we input it similar by as in the previous case in (3.76), with some

simplifications the relation is
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W (5)+ b(s)p(s) ¥ (s) (3.91)

Both denominators are again the characteristic polynomial d (s) =a (s) P (s) + b(s) q (s) .

Stability is again fulfilled by polynomials g(s) and p(s) of the feedback part of the
controller the parameters of which are computed from Diophantine equation (3.79).

Asymptotic tracking is obtained by the solution of the second Diophantine equation
t(s)fw(s)er(s)r(s)zd(S) (3.92)

where #(s) is only an additional polynomial which is used only for the solution of

Equation (3.92) and not in transfer functions.

On the other hand, disturbance attenuation is gained in the case that polynomial p(s)
in the denominator of the Q(s) and R(s) is divisible by polynomial f,(s). We can then

rewrite this polynomial to the form of
p(s)=1.(s)-p(s) (3.93)
Diophantine equation (3.79) is then

a(s)fv(s)]'i(s)er(s)q(s):d(s) (3.94)

and transfer functions of feedback and feedforward segments are
~ s ~ r(s
Q(S): q(_ )(S)’ R(S): ( ) (3.95)

The degree of characteristic polynomial d(s) is computed from (3.94) as

degd (s)= deg(a(s)fv (s)[)(s)) =dega(s)+deg f,(s)+deg p(s) (3.96)
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The number of unknown parameters is similar to the previous case

deg p(s)+degq(s)+2 (3.97)
and the number of equations is

dega(s)+deg f,(s)+deg p(s)+1 (3.98)

The relation for the degree of polynomial g(s) is computed from the condition that

the number of unknown parameters must be equal to the number of equations, i.e.

deg p(s)+degq(s)+2=dega(s)+degf,(s)+degp(s)+1=

3.99
:>degq(s)=dega(s)+degfv(s)—l (3.99)

The degree of polynomial p(s) is computed via
deg[)(s)zdega(s)—lJrkd (3.100)

with constant k,; on the right side and and the degree of the polynomial d(s) in
Equation (3.96) is then

degd(s)=2dega(s)+deg f,(s)—1+k, (3.101)
The degree of polynomial d(s) from the second Diophantine equation (3.92) is
degd (s)=degt(s)+deg f, (s) (3.102)

and the degree of polynomial r(s) is obtained from the comparison of the number

of unknown parameters and number of equations:

degt(s)+deg f, (s)+1=degt(s)+degr(s)+2=

= degr(s)=deg f, (s)-1 (3.10)
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Finally, the degree of auxiliary polynomial #(s) can be computed as
degt(s)=2dega(s)+deg f,(s)—1-deg f, (s)+k, (3.104)

It is clear that the degree cannot be negative, therefore we choose constant k; so

that deg #(s) is at least zero. The value of this constant can be obtained from the condition

of properness deg p(s)>degr(s):

degfw(s)—lZdega(s)—1+deg]’v(s)+kd =

=k, >deg f, (s)—dega(s)—deg f, (s) (.103)

and if k, <0, then k, =0.

Pole-assignment Method

Several methods are used for designing polynomial d(s) based on the Pole-
placement or Pole-assignment method. It is usually connected with the polynomial

synthesis and fulfils control requirements [37].

The control system is stable if polynomial d(s) on the right side of Diophantine
equations (3.81) and (3.92) is stable. This condition is accomplished if the root of the

polynomial lies in on the left side of the complex plane — see Figure 3.4.

Polynomial d(s) can generally described as

degd(s)
d(s)=[] (s+s,) (3.106)

where s, =, + @,j are roots of the polynomial. The stability condition described

in the previous paragraph means that ¢; must be less zero. There are a lot of ways and rules
how to choose these roots. Complex conjugate pairs of roots results in periodic course of

the output variable. On the other hand, the output variable has aperiodic course for @; = 0.
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We can generally say that selection of real (Re) and imaginary (/m) parts affects

overshoots and settling time of the output variable.

STABLE PLANE UNSTABLE PLANE

ZAIm

Roots on the
Stable roots stability border Ungtable roots

Re

Figure 3.4 Stability in complex plane

The simplest way how to choose roots of polynomial d(s) is selection of double,

triple etc. multiple roots:
d(s)=(s+a)";d(s)=(s+a)" (s +a,)"" ... (3.107)

For example, if polynomial d(s) is of the fourth degree, we can select two

aperiodic double roots, i.e.
d(s)=(s+a) (s+a,) (3.108)

We can obtain similar roots for the sixth degree of d(s) etc.

However, this method has one disadvantage, there is no rule how to choose roots c.
One way how to overcome this problem is to connect choosing of polynomial d(s) with
parameters of the controlled system. This can be done through spectral factorization [39].
A big advantage of this method is that it can make stable roots from every polynomial,
even if it is unstable.
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Polynomial d(s) can be divided into two parts — m(s) and n(s), so
d(s)=m(s)-n(s) (3.109)

where polynomial n(s) is computed from the spectral factorization of polynomial

a(s) in the denominator of the transfer function G(s) (3.72)
n*(s)-n(s)za*(s)-a(s) (3.110)
and polynomial m(s) is a stable one

m(s)=(s+a)"""" 3.111)

where ¢; > 0 are (degd —deg n) optional stable roots, usually called poles of the

control system. A disadvantage of this method is that it still has an uncertainty in

polynomial m(s).

The third method used in this work combines spectral factorization and theory of
the Linear Quadratic (LQ) tracking. The LQ approach is based on an optimal control
theory and in addition to the basic control requirements, it minimize the cost function in

the complex domain

Jio = [{tt0-€ (1) + @, 1% (1) dt (3.112)

S8

where ¢,0 > 0 and y;¢ > 0 are weighting coefficients, e(?) is control error and u(t) denotes

difference of the input variable. Polynomial d(s) in this case is
d(s)zg(s)-n(s) (3.113)

Polynomials n(s) and g(s) are computed from spectral factorization
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(a'f)*‘(/)LQ'a’f"‘b*‘;uLQ'b:g*'g

* *
n-n=a -a

(3.114)

and for control variable u(f) and disturbance w(f) from the ring of step functions
fis) = s. The resulted controller is strictly proper and the degree of polynomial d(s) is

computed via

degd =deg(g-n)=2dega+1 (3.115)

3.2.2 Predictive Control

The main idea of predictive control is to calculate the control sequence from the
actual time point minimizing the deviation of the reference signal and the output signal of
the plant in the future horizon. The future values of the reference signal are given in
advance or are assumed to be equal to the present one. The future values of the plant can
be predicted from a process model. If disturbances are measurable, then their future values

are predicted using some assumptions.

The basic structure of the predictive control can be seen in Figure 3.5 [58].

constraimts cost fimction PROCESS

G(z)

OPTIMIZER.
min J

O e W W (o)

ﬁ‘ee response MODEL ;
l GG | i)
G(z <
? predictor
MODEL |g
forced response G(z)

___/
Figure 3.5 Basic structure of the predictive control system
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The total predicted response of the system, J, consists of two parts. The first part,
free response, is the predicted behaviour of the output y(t + j|t) based on old values of
outputs y(t—i|t) and inputs u(z—i|t). The second part is called forced response and

represents the output computed from the optimization criterion.

The sum of both components results in total prediction y(t+ j|t) for linear

systems. The future error is then obtained by subtracting of this output from future

reference signal w(t +j|t) ,1.e.
e(t+ jlt)=w(t+jlt)=y(¢+ j|t), forj=1,..N (3.116)
The action value (input variable) is then calculated to force the output variable to

the wanted value (reference signal).

Generalized Predictive Control (GPC) is one of the most popular predictive
methods based on Model Predictive Control (MPC) [44], and has been successfully used in

praxis for different types of control problems from this time.

The GPC has many common ideas with the ordinary predictive methods but it has
some differences to such as the solution of the GPC controller is analytical, it can be used

for unstable and non-minimum phase systems etc.

FORMULATION OF GENERALIZED PREDICTIVE CONTROL

The general single-input single-output (SISO) after linearization can be described

through the discrete backshift operators z' as
A(z")-w(0) =z B(z")u(t-1)+C(=")-e(t) 3.117)

where u(f) is control variable, y(¢) output variable, e(f) denotes a zero mean white

noise, and d is dead time of the system. Polynomials A(z"), B(z") and C(z™") are
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n

A([1 ) =l+az ' +a,z7 +...+ a,z
B(z')=b,+bz " +bz" 4. +b 2" (3.118)
C(z’1 ) =l+cz +c,z 7+t ¢,z "

Equation (3.117) is called the Controller Auto-Regressive Moving-Average
(CARMA) model. This model is not suitable in most industrial processes where
disturbances are non-stationary. In these cases, the integrated CARMA (CARIMA) model

1S more suitable

A(zY)y(t)=2" -B(z-l)-u(t—1)+c(z-l)-¥ (3.119)

where A=1-z".

The GPC algorithm can be then formulated as minimization of the cost function

Jgpe = 2 5, (j)[p(t+j|t)—w(t+j)}2 &;zy (H[du(e+j-1)T (3.120)

where j/(t +j |t) is an optimum j-ahead prediction of the output on data up to time ¢,
further, N, and N, denote minimum and maximum costing horizons, respectively, &, is
control horizon, w(t + j) means reference signal, Au stands for manipulated variable and
finally 6,(j) and A,(j) denote weighting sequences. The values of these factors are for

simplification assigned as &, = 1, and 4, is constant through the whole time interval of the

control.
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COMPUTATION OF GENERALIZED PREDICTIVE CONTROL

The object of predictive control can be formulated as collection of the future
values of the input variables u(#), u(¢+1), ... which drive the future values of controlled

variable y(#+) to reference signal w(z+7) by minimizing of the cost function Jgpc.

If we multiply all parts of Equation (3.119) by element AE; (z" ) -z’ this equation

has form
A(z)-AE (=) y(t+)=B(z")-A-E, () u(t+ j—d—1)+ E, () -e(t+ ) (3.121)

Now we must introduce a new Diophantine equation because of the solubility of
Equation (3.121):
1=A-E,(z")-A(z")+z/F () (3.122)

J

Equation (3.121) is then

[1=27F, () [p(e4 ) =B, (=) B(= ) Au(t+ j—d =1)+ E, (7 )e(t+ /) (3.123)
which can be formally rewritten to the form

e+ jlt)=G (" )Au(t+j-d-1)+F,(z7)y(1) (3.124)

where G, (z’l)zEj (z’l)B(z’l), degrees of E; and F; are degE, = ;-1 and
deg F, =n,, respectively. These polynomials can be obtained through the dividing 1 by

AA(Z_I) until the remaining part can be factorized as z/ F, (z'l) , and we can define them

as

Fj(z"):fj,o + [z e S

S 4 i (3.125)
Ej(z )=ej’0+e/.,lz +...te z

-75-



If the same technique is used for deriving of the polynomials £;; and Fj.y, i.e. 1 is

divided by AA(Z_I) until the remaining part can be factorized as z_("'”)FjH(z'l); then
polynomials Fj;; and E},, are
F, (Z_l) = fj+1,o + fj+1,lz_1 oot fj+1,naz_ml

(3.126)

-1\ _ -1 -(j-1)
E/.H(z )—ej+l’0+e‘/.+l’lz +..te, .z

It is clear that the polynomial E; (or F}) from the previous step can be used for the

derivation of polynomial E;,;(£}+):

E.(z")=E (z")+e,, 2’ (3.127)

) v

where e, = £,y
Polynomial Gy.; can be computed recursively again from equation

G(z")=E0 () B(z") = E, () + 1,027 |B(27) (3.128)

which means that G;;; come from the G;:

Gui(z7)=G,(z7)+ f,027B(27) (3.129)

J

The first coefficient of polynomial G, is identical with the first coefficient in G;

and the remaining coefficients are computed from equation

iy =8 it b, fori=0,1,....n, (3.130)

Equation (3.117) takes into account the dead time of the system, d, and we must

include this time into the prediction horizon, i.e. Ny,=d+1, N,=d+N and N, =N .
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Now we can formulate equations for future predicted output values:

Pe+d+1|t) =G, Au(t)+ F, (1)

j/(t+d+2|t):Gd+2'Au(t+1)+Fd+2y(t) 6.3
P(t+d+NJt)=G,, Au(t+N-1)+F, ,y(t)
which is in the vector form
y=Gu+F(z")y(t)+G' (") du(t-1) (3.132)
where vectors y, u, G, G’(z") and F(z'") are
)A/(t+d+1|t) Au(t)
b y(t+c{+2|t) - Au(f+1)
P(t+d+Nlt) Au(t+N 1)
& 0 .0 ' [Gun(7)-0 ]z |
G- & g& - 0 GI(Zil)Z [Gdu(zil)_go_glzil]zz
En-1 -2 - & [GdJrN(Z_l)_go_812_1_u-_gN,]Z_(N_I)]ZN
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The last two parts of Equation (3.132) depend only on the past values and we can

group them into one variable, f:

y=Gu+t (3.133)
The cost function (3.120) can be now rewritten to the vector form

J=(G-u+f-w) (G-u+f-w)+4, u" -u (3.134)
Where the vector of reference values is

w=[w(t+d+1),w(t+d+2),...w(t+d +N)| (3.135)

and (3.134) can be rewritten to
Jope =%uTHu+bTu+f0 (3.136)

where

H=2(G"G+2,1)
b =2(f-w) G (3.137)
f,=(f-w) (f-w)

The goal of the predictive control is to minimize cost function Jgpc which means

that we set Jgpc = 0 in (3.136) which leads to control law:

u=(G"G+2,I) G (w-f) (3.138)
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3.3 Main Types of Chemical Reactors

Chemical reactors are special devices used in chemical engineering for
manufacturing different chemical products. There are two main types of chemical reactors

— tank reactors and tubular reactors [4].

The main variables which are observed are the volume of the reactor, reactant's
and product's concentrations, input, inside and output temperature, pressure, concentrations
of the components, heat capacities, densities, heat transfer coefficients etc. Some of them
are important and must be taken into account, but some of them must be neglected or set to

constant because of the complexity of the mathematical description.

Tank reactors are usually stirred to ensure an efficient course of the reaction inside
the vessel. These reactors are called stirred-tank reactors and can be divided from the
feeding point of view into batch, semi-batch and continuous types. All stirred reactors can

be mathematically described by a set of ODE.
A batch reactor (Figure 3.6) is the simplest type of stirred chemical reactors.

stirrer

reactant

cooling/
heatin

inlet " b

cooling/
_heating

outlet

cooling/heating
jacket

Figure 3.6 Batch reactor

It can be characterized by a vessel of a given volume, with all reactants added at

the same time — at the beginning of the process. The concentration of the reactant
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decreases continuously with time. At the end of the process the reactor is emptied, cleaned
and another batch can be filled in the same reactor. This is very simple and provides great
flexibility of the basic equipment. However, the downtime needed for loading and cleaning
of the reactor are the disadvantages. Batch operations are often ideal for small scale

flexible production, high cost and low output production.

On the other hand, for many reactions the pure batch operation is not suitable
because of safety or selectivity reasons. In this case we can use a semi-batch system where
one reactant is put at the reactor in the beginning and other components can be added to the
reactor during the operation at different times (Figure 3.7). Semi-batch operation allows
for changing of the reactant concentration in a very flexible way, and it is easier to control
the operations. The flexibility of operation is generally similar to that of a batch reactor

system.

reactant
.——
inlet

cooling/
heatin

inlet

cooling/
_heating

“outlet

cooling/heating
jacket

Figure 3.7 Semi-batch reactor

Continuous Stirred Tank Reactors, CSTRs, (Figure 3.8) are often used because of
their good control properties. Feeding and unloading can be done continuously, which can
be easily used for control where we want to affect product properties by the feeding speed,
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for example. One of the disadvantages, however, is limited use for different types of

reactions.

CSTRs are often connected parallelly or in series, which enables to utilize

economic benefits of CSTR. The product from the first reactor is the input to the next one.

reactant
'—
inlet

reactant

cooling/
heating

inlet

cooling/heating cooling/
: . heatin
JaEHE outlet

., reactant
" outlet

Figure 3.8 Continuous stirred tank reactor

An infinite number of CSTRs or infinitely small CSTRs operating in series create a
tubular chemical reactor, which is another main type of chemical reactors. It is called in
some literature Plug-Flow Reactor (PFR). In the tubular chemical reactor all reactants and
products flow continuously along the length of the reactor — see Figure 3.9. It is usually
considered with plug flow of the reactant or cooling through the reactor to lower
complexity. The variables then depend not only on the time variable, but also on the

dimensional variable, which results in a set of PDE.
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Figure 3.9 Tubular chemical reactor

As seen from previous figures, all types of reactors are displayed with the
cooling/heating jacket. The use of the cooling and heating in the process depends on the
type of reaction inside the reactor. The reaction which produces heat is called the
exothermic reaction which needs cooling contrary to the endothermic reaction which

needs heat in the jacket to start the reaction or to achieve better results.

The continuous stirred tank reactor belongs to the class of the lumped-parameters
systems. The mathematical model of CSTR can be derived from the balances inside the
reactor. The material balance can have general form:

q.c,=q,.c -V, Zr +V—, fori=1,...,i, (3.139)

and general heat balances of the reactant and cooling/heating liquid are

dT
a,p,¢,T,+V, Zh r=4pc, T+ AU (T ~T)+V,pcr - (3.140)
dr,
4Pl + AU ~T) =g p.e, T +Vop.e, (3.141)

The symbols in the set (3.139) — (3.141) have following meaning: g are flow rates,
¢ denotes concentrations, r is used for reaction speed, V states volume, ¢ is time, p denotes
density, c, heat capacity, T is used for temperature, 7 means enthalpy, 4, is cooling/heating
surface, U represents heat transfer coefficient. Indexes (+), and (). relate to the reactant and
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cooling/heating, respectively, (-), means input variable, (-); denotes i-th part of the
component and (-); is used for number of reaction. The initial conditions for Equations

(3.139) — (3.141) are obtained from the steady-state, i.e.
c,(0)=c fori=1,...,i0; T(0)=T"; T.(0)=T’ (3.142)

On the other hand, typical member of the continuously distributed-parameters
system is tubular chemical reactor. The mathematical model of this system consists of the

set of PDE which are obtained from the material and heat balances inside in this general

form:
oc, oc, ] ]

Lty —’=Zr.., fori=1,...,i,
ot " Oz e '/

j=1
J

a;r+vraaT’= ! Ohrrj——d4U1 (r.-71,)

¢ Py s 1P pr (3.143)
oT

e [dU(T, - T,)+d,U,(T, - T,)]
! (dZ__dl)prpw
or, oT, 4md U,

tv, =— 5 (r,-T,)

ot 0z (d3 _md2)pccpc

where + in the last equation takes into the account co-current and counter-current
cooling/heating in the jacket (“+” is used for co-current unlike “— for counter-current

cooling/heating).

The symbol ¢ denotes concentrations, v are fluid velocities, r is used for reaction
speed, ¢ is time variable, z space variable, p denotes density, ¢, heat capacity, T is used for
temperature, & means enthalpy, A4, is cooling/heating surface, U represents heat transfer
coefficient, d is diameter of the pipe and m means number of pipes. Indexes (*),, (*),, and
() stands to the reactant, wall of the pipe or cooling/heating, respectively, (), means input

variable, (); denotes i-th part of the component and (-); is used for number of reaction.
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The initial conditions for the model (3.143) are:
c.(z,0)= CZ.S (2), T.(z,0)=T'(2), T,(z,00=T,(2), T.(z,0)=T.(z)

and the set of PDE must have boundary contiditions, as written above, in this case:

Ci(Oat):ci()(t)a T,,(O,I)ZT,,()(Z‘), Tc(Lst):TcL(t)
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4 EXPERIMENTAL PART

The experimental part is mainly focused on simulation and finally practical
verification of the selected simulations and control methods mentioned in the theoretical
part. All methods were done first simulatively on the computer by the mathematical model

and the results were then compared with those from the real model.

The following experimental part is focused on two mathematical models of
chemical reactors — CSTR and tubular chemical reactors and the real model of the CSTR.

The steps described in the previous chapter are applied to all these systems.

4.1 Continuous Stirred Tank Reactor

As written above, all models are divided into several parts, as it follows from the

modelling procedure described in Chapter 3.1.2.

4.1.1 Description of the Model

The first model of the CSTR is schematically displayed in Figure 4.1.

Figure 4.1 Continuous stirred tank reactor with cooling in the jacket
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The reaction inside the reactor is called van der Vusse reaction and can be
described by the following scheme [59]:
At 5Bt 5C

4.1)

24—%5 5D

The mathematical description of the process is very complex and we must
introduce some simplifications. In this case we expect that the reactant is perfectly mixed,
all densities, heat capacities and transfer coefficients are constant throughout the reaction.
In fact, they are not constant but they usually vary only in a small range, which led us to

neglect this variation.

With all these simplifications we can introduce the mathematical model which is
based on four material and heat balances inside the reactor described in the theoretical part

(see Chapter 3.1.2).

dc

7: = ;I/: (cAo _CA)_kch _k3cA2

dc

Tf:—q—:03+kch—kch .
4.2

A, )L AV (1 1)

dt Vr prcpl‘ Vl‘pl‘cpr

dT 1

£ = +AU(T. -T.
=——(0.+4U(T,-T.))

¢ pc

where ¢, >0, ¢ > 0.

Variable ¢ in the set of ODE (4.2) and similarly in Figure 4.1 is the time, c are
concentrations, 7 represents temperatures, ¢, is used for specific heat capacities, g, means
volumetric flow rate of the reactant, Q. is heat removal of the cooling liquid, V' are
volumes, p stands for densities, 4, is the heat exchange surface and U is the heat transfer
coefficient. Indexes (*), and () belong to compounds A and B, respectively, (¢), denotes

the reactant mixture, (¢). cooling liquid and (¢), are feed (inlet) values.
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As can be clearly seen, this mathematical model of the reactor belongs to the class
of lumped-parameter nonlinear systems [8] because it is described by a set of ODE.

Nonlinearity can be found in reaction rates (k;), which are described via the Arrhenius law:

kj(Tr)szj-exp(R—T’j,forjzl,Zﬁ (4.3)

I

where kj represent pre-exponential factors and E are activation energies.

The reaction heat (%,) in Equation (4.2) is expressed as:
h.o=h k-c,+h k -c,+h k- (4.4)

where /; means reaction enthalpies.

The initial conditions for the set of ODE (4.2) are

c,(0)=c,c;(0)=c;, T (0)=T",T.(0)=T" (4.5)

r r~c c

The mathematical model of the system described by the set of ODE in Eq. (4.2)
shows that this model has four state variables — c4(¢), ca(f), T(¢) and T,(¢).

In this step, several input variables can be used — for example input concentration
of compound A, cy, input temperature of the reactant, 7, etc. However, the physical
viability of these variables is greatly limited from the practical point of view. That is why
are simulation studies mainly focused on the volumetric flow rate of the reactant ¢, and the
heat removal of the cooling liquid Q.. The change of both quantities can be practically

represented for example by the turn of the valve on the inlet pipe, or by the speed of the
pump.
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Fixed parameters, input and state variables

Fixed parameters of CSTR are given in Table 4.1 [59].

Table 4.1. Parameters of CSTR

Name of the parameter

Symbol and value of the parameter

Volume of the reactor

Density of the reactant

Heat capacity of the reactant
Weight of the coolant

Heat capacity of the coolant
Surface of the cooling jacket

Heat transfer coefficient
Pre-exponential factor for reaction 1
Pre-exponential factor for reaction 2
Pre-exponential factor for reaction 3
Activation energy of reaction 1 to R
Activation energy of reaction 2 to R
Activation energy of reaction 3 to R
Enthalpy of reaction 1

Enthalpy of reaction 2

Enthalpy of reaction 3

Input concentration of compound A

Input temperature of the reactant

v, =0.01 m’
0,=934.2 kg.m™
¢,y =3.01 kJ kg K"

m.=5kg
Cpe=2.0 kS kg K
A,=0215m’

U =672 kJ.min'm*K"

koi = 2.145-10" min™

ko, =2.145:10" min™

kos = 1.5072-10% min™" kmol”

E\/R =97583 K
Ey/R=97583 K
E3/R =8560 K

hy = -4200 kJ.kmol’!
hy= 11000 kJ.kmol’!
hy= 41850 kJ kmol’!
co=25.1 kmol.m™
T,0=387.05 K

4.1.2 Steady-state Analysis

The theoretical background for the steady-state analysis is examined in detail in

Chapter 3.1.3. The steady-state analysis for stable systems involves computing the values

of state variables in time ¢ = oo, when the changes of these variables are equal to zero. It
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means that the set of ODE is solved with condition J(:)/0¢t = 0. Now the set of ODE (4.2)

can be rewritten to a set of nonlinear equations:

2
q q q,
—| Lk | k| |4k
S [V,. J (V, j ( 3 ( V,%ﬂ ke
i . CB:—’

Cc, = 9 5
8 2k, k2+&
v, (4.6)
T
o U pe, P,V o O o
' q,, U4 ’ U4 7
V. p.c,-V,

To solve the set (4.6) a simple iteration method was used. A low value of the
difference between the actual the value of the quantity and value from the previous step

was chosen as a criterion for termination of the iteration process:

r

T.(i)=T (i -1)|+|7, (i) -7, (i 1) <&, (4.7)

where (i) is an index of the actual iteration, index (i — 1) is related to the previous

iteration, and &, denotes accuracy, which was chosen in this case ¢;,= 107

The first graphs displayed in Figure 4.2 show the course of the computed variables

through iterations.

1.10 388
291 o ______ T
2.81 - K 1.08 i
/ .
2.74 I R A
o 1.06%
c 264 | ! E J
s ! 2
£2°1 i 1.04Z i
mo<(2.4' | Kty
231 L1.02 T
2.24 | c 4
21] 1.00
0 5 10 15 20 25 30 35 15 25 30 35
iteration [-] iteration [-]

Figure 4.2 Course of iterations for concentrations ¢’ and ¢z’ and temperatures 7,’ and 7T,
during the computation, CSTR
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As can be clearly seen, computation leads to the solution in about thirty iterations
and there is no need to further continue with the computation. Two steady-state analyses

were done — for various heat removal of the cooling liquid, Q. in the range
0.= <—500; 500> kJ.min™" and various volumetric flow rate of the reactant, g, for values
q, = <0; 0.03> m’.min~" . The results presented in Figure 4.3 and Figure 4.4 show negative

properties of the reactor — especially the course of steady-state values of concentrations ¢’

and cp’ has highly nonlinear behaviour.

500
450+

< 400

[krmot e

350

250 0 250
Q, [kd.min™]

250 500
Q,[ad i’ ]

Figure 4.3 Steady-state values of concentrations ¢,* and c¢g* and temperatures 7," and 7.’ for
various heat removal, O., CSTR
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Figure 4.4 Steady-state values of concentrations ¢’ and ¢’ and temperatures 7," and 7.’ for
various volumetric flow rate, ¢g,, CSTR
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3D-plots of the steady-state value of concentration ¢z’ and temperature 7,° for

various ¢, and Q. are in Figure 4.5.

Figure 4.5 Steady-state values of the product’s concentration, ¢3’, and the temperature of the
reactant, 7,°, for various heat removal, Q,, and volumetric flow rate, ¢g,, CSTR

Static analysis usually results in an optimal working point. The maximum of the
product’s steady-state concentration, ¢5’, was chosen as a criterion for choosing an optimal
working point. Concentration ¢z has its maximum for the volumetric flow rate
g, =2.365-10" m’.min" and the heat removal Q. = -18.56 kJ.min"' — see Figure 4.3 and
Figure 4.4.

4.1.3 Dynamic Analysis

The steady-state values from the previous analysis were used as input conditions
for the dynamics. These values for the working point defined by the volumetric flow rate

g, =2.365-10" m’.min"" and the heat removal Q.° = -18.56 kJ.min™" are

¢’ =2.1403 kmolm™ ¢} =1.0903 kmol.m™

, , (4.8)
TS =387.34K T* =386.06 K
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Dynamic analysis was done for various step changes of the input heat removal of
the cooling liquid, QO., and volumetric flow rate of the reactant, ¢,, which are, for better

projection, recomputed to percent via

u(t)z%-loo;u(t)sz"i-loo [%] (4.9)

Four step changes £10% and £20% of both input variables — the heat removal Q.
and the volumetric flow rate ¢, were done. The working point from the steady-state
analysis was used and these step changes can be numerically described by AQ. = 3.712
(-20%), 1.856 (-20%), -1.856 (10%), -3.712 (20%) kJ.min" and Ag, = -4.73-10™ (-20%),
-2.365:10™ (-20%), 2.365-10 (10%), 4.73-10™* (20%) m’.min’".

The fourth-order Runge-Kutta’s method was used for numerical solution of the set
of ODE (4.2). Although the used MATLAB program has different Runge-Kutta’s methods
as build-in functions, for example ode23 (second order Runge-Kutta’s method) or more
common by used function oded45 (The fourth-order Runge-Kutta’s method), for our
computation the easily programmed Runge-Kutta’s method from chapter 3.1.4 was used.
An advantage of this program is simplicity and the integration step is fixed during the
computation, unlike MATLAB’s build-in functions which are computed more generally
and the integration step can vary according to the actual computation error. This step-
variability could cause computation problems for more complex sets of ODE. Simulation

time was 30 min and fixed integration steps /; = 0.1 min were used.

Output variables y;, in Figure 4.6 to Figure 4.9 illustrate the difference of

variables ¢y, cp, T, and T, from their steady state values, which are in fact initial conditions:

n()=c,()-c:  »n(t)=c,(t)-c;: [hmolm™]

(4.10)
ys(t)zTr(t)—Tr“'; y4(t)=Tc(t)—Tj; [K]

This simplification has only one reason — all graphs start in zero and we can easily

estimate time constants, gain etc.
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Figure 4.6 Dynamic analysis of outputs y; (c4(¢) — ¢4") and y, (¢p(¢) — ¢5’) for various step
changes of the input heat removal, Q., CSTR

The first output responses to the step change of the input heat removal, Q,., for
outputs y; and y,, which represent the differences of concentrations ¢, and cp from their
steady-state values have shown that the first output, y;, can be expressed for example by
the second order transfer function. On the other hand, the output y, has negative properties

from the control point of view — non-minimum phase behaviour and changing sign of the

gain — see Figure 4.6.
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Figure 4.7 Dynamic analysis of outputs y; (7(¢) — T;°) and y, (T.(¢) — T,") for various step
changes of the input heat removal, Q., CSTR

Outputs y; and y, in Figure 4.7, which represent courses of temperatures 7, and 7.
related to their input values 7, and 7,°, have shown that output y; can be approximated by
the second order transfer function and the output cooling temperature in the output y, has a

course similar to the first order transfer function.
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Figure 4.8 Dynamic analysis of outputs y; (c.(¢) — ¢,’) and y, (ca(f) — ¢5’) for various step
changes of the input volumetric flow rate, ¢,, CSTR

The second dynamic study for various step changes of the volumetric flow rate of
the reactant, ¢,, presented in Figure 4.8 and Figure 4.9 shows that all outputs y; — y,4 have

negative control properties similarly to output y, in the previous dynamic study.

-20%

0.4 0.4 20%
0.2 0.2
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Figure 4.9 Dynamic analysis of outputs y; (7(¢) — T,’) and y, (T.(f) — T.%) for various step
changes of the input flow rate, g,, CSTR

The dynamic analysis shows the response of output variables to the step change of
the input quantity. This was mainly done for control purposes. It shows output properties

and helps with the choice of the appropriate control strategy.
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4.1.4 Simulation of Control

The first control strategy used in the simulation part is Adaptive control described

in detail in Chapter 3.2.1.

The Adaptive control used in this work is based on an choice of the appropriate
External Linear Model (ELM) of the originally nonlinear process parameters of which are
estimated recursively during the control. The parameters of the controllers are recomputed
according to the estimated parameters in every step too. The polynomial approach with the
pole-placement method and two control configurations with one degree-of-freedom (1DOF)

and two degrees-of-freedom (2DOF) were used for design of the controller.

Based on the dynamic study, the step change of the heat removal of the cooling, O.,
was chosen as an input (control) variable u(¢) and the temperature of the reactant, 7,, again
related to its initial condition (steady-state value) was used as an output (controlled)

variable y(?), i.e.

() =229 00104 (1) =T (0) -7 [K] @11)

r r
C

The output y(¢) can be represented by the second order transfer function with
relative order one:
b (s ) bs+b,

G(S):a(s):s2+a,s+a0 (+12)

The parameters of polynomials a(s) and b(s) in (4.12) are estimated recursively
during the control with the use of RLS method with changing exponential forgetting,
where forgetting factor 4, is recomputed in every step via Equation (3.65). The initial

values are: K = 0.001 and parameters y(0) = 0, &0) = 0.

The working point and initial values for identification are shown in Table 4.2.
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Table 4.2 Working point and parameters of the identification used for the control, CSTR

Name of the parameter Symbol and value of the parameter
Input concentration of compound A ca0="5.1 kmol.m™
Input temperature of the reactant T.0=387.05K
Input volumetric flow rate of the reactant g, =2.365 107 m? .min™
Input heat removal of cooling 0. =-18.56 kJ.min™'
Starting vector of parameters 0, (O) = [0. 1,0.1,0.1,0. 1]T

1-10° 0 0 0
0 1.10° 0 0
0 0 110° 0
0 0 0 1-10°

Starting covariance matrix P (0) =

The quality of control was evaluated by the quality criteria S, and S, computed for

a time interval as

S, = (u(i)~u(i-1)) [-]; S, :2(W(z~)— y(i))’ []. for N:,% (4.13)

where T is time of simulation — in this case 7y = 450 min.

The best results will be compared in the last part of this chapter. The sampling
period 7, = 0.3 min is common for all studies and the course of the reference signal

(wanted value), w(?), is:

w(t)=2-[1—exp(-0.1-1)| K forz €(0;150)min
w(t)z—lK forte(150;300)min 4.14)
w(t)=1K fort € (300;450) min

The action value (input signal) is limited due to technological reasons
u(t) = <-75;+75> % of Q.. Several simulation studies were done and some of them will be

presented in the next chapters and figures.
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ADAPTIVE CONTROL WITH POLE-PLACEMENT METHOD

The first adaptive controller uses spectral factorization to design a stable

polynomial d(s) on the right side of Diophantine equations (3.81), (3.92) and (3.94).

The controller has the 1DOF configuration which means that it has only in the
feedback part (see Figure 3.2). The transfer function of the controller Q(s) (3.82), with the
condition that reference signal w(f) and disturbance v(f) are chosen from the range of the

step functions, has form

O(s)=— (4.15)

where the parameters of polynomials ¢(s) and p(s) are computed from the

Diophantine equation
a(s)-s-ﬁ(s)+b(s)‘q(s)=d(s) (4.16)

by the method of comparison of the coefficients.

The degrees of polynomials d(s), ¢(s) and p(s) are then, according to (3.84), (3.87),
(3.88) and (4.12),

degd(s)=dega(s)+degp(s)+1=2+1+1=4
degq(s)=dega(s)=2 (4.17)
deg p(s)>dega(s)-1=>degp(s)=2-1=1

The transfer function of the controller (4.15) is then

5= 9(5) _ a5’ +as+g,
Q() S'ﬁ(S) S'(s+p0)

(4.18)
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Polynomial d(s) on the right side of the Diophantine equation (3.81) can be divided
into two polynomials: d(s)=m(s)-n(s) (see (3.109)), where polynomial n(s) is

computed by the spectral factorization of polynomial a(s):
n*(s)on(s)za*(s)-a(s) 4.19)

The degree of polynomial n(s) is equal to dega (s) , 1.e.

n(s)=52+nls+n0:>n0=\/g;n,=«/a,2+2n0—2a0 (4.20)

The second part of polynomial d(s), stable polynomial m(s) was chosen as

m(s)=(s+a, )degd*degn =(s+a, )2 4.21)

which results in one double root where a; > 0.

On the contrary, control configuration with two degrees-of-freedom — 2DOF
(Figure 3.3) has controller divided into two parts — the feedback part with transfer function
0O(s) and the feedforward part with transfer function R(s), which are for step functions of

reference signal w(¢) and disturbance v(¢):

o(s) -1 (s)-LL) (4.22)

where parameters of polynomials p(s), g(s) and r(s) are computed by the method

of comparison of the coefficients from the set of two Diophantine equations (3.94) and

(3.92):
(4.23)

where #(s) is only additional polynomial used for solution and it is not used in

transfer functions.
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The degrees of polynomials p(s), g(s), 7(s) and d(s) are computed via (3.96) to

(3.105):

degqg(s)=dega(s)=2

deg p(s)=dega(s)-1=2-1=1

degr(s) =0 (4.24)
degd(s)deega(s) =2-2=4

degt(s)zdegd(s)—1=4—1=3

and transfer functions (4.22) are

O(s)- 9(5) _ 45"+ g5+,
R(S):s~]3(s):s-(s+p0)

The choice of the stable polynomial d(s) is similar as for 1DOF control

configuration. Both 1DOF and 2DOF control configurations &-ELM were used.

The estimated output is recomputed recursively from differential equation
vs(k)=6; (k)-@; (k1) (4.26)

where the vector of the parameters, 85, and the data vector, @, are
0,(k)=[al.ap.bl.b}] s @,k 1) =[-y,(k ~1,~y, (k= 2u,(k D, (k2] (4.27)

and

y(k)=2y(k -1+ y(k-2)

Vs(k)= 7
yﬁ(k_l):y(k—l);y(k—2) ud(k_l)zu(k—l);u(k—m (428)
Vs(k=2)=y(k-2) us(k—2)=u(k-2)
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Three simulation studies were done for different values of parameter

a; = 0.05, 0.1 and 0.4, which represent the position of the double root.

Figure 4.10, which represents the course of the input variable, u(¢), the reference
signal, w(#), and the output variable, y(#), for the control configuration with 1DOF, clearly
shows that the output response is quicker with increasing value of parameter ¢;. On the

other hand, there can be some overshoots of the output variable and the course of the input

variable, u(?), is not so smooth for bigger values of «;.

w(t), y(t) [K]
u(t)[%]

~o 100 200 300 400 0 100 200 300 400
t [min]

Figure 4.10 The course of y(¢), w(¢) and u(¢) for different position of the parameter
a;=0.05, 0.1 and 0.4, 1DOF, pole-placement method, -ELM, CSTR

The course of identified parameters a’y, a1, b’o and b’ in Figure 4.11 shows that
the used recursive identification has no problem with parameter estimation during the
control except for the very beginning, where the apriory information about the system is
insufficient. It is desirable to include some forgetting factor in the identification because
the estimated parameters without forgetting correspond to the average values and all input-

output samples have the same weight for estimation.

-100-



]

1.0

0 100 200 300 400 0 100 200 | 300 400

0.005
— 0.000-
= o= 0.05
CR | P S ot | R
-0.0054 e - = L ]
a=0.4
-0.010 , . . : . , . . .
0 100 200 300 400 0 100 200 300 400

t [min] t [min]

Figure 4.11 The course of identified parameters a’y, @ ’;, o and b’y during the control,
1DOF, pole-placement method, ELM, CSTR

Figure 4.12 shows the results for 2DOF configuration. As can be seen, the results
are similar as for 1DOF — the increasing value of parameter ¢; mainly affects overshoots

and the speed of control.

25
2.0
154/
1.04:
0.5

w(t), y(t) [K]
u()[%]

“o 100 200 300 400 0 100 200 300 400
t [min] t [min]

Figure 4.12 The course of y(¢), w(f) and u(¢) for different position of the parameter
a;=0.05, 0.1 and 0.4, 2DOF, pole-placement method, &~ELM, CSTR
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The comparison of control results with IDOF and 2DOF configuration in Figure
4.13 shows the main advantage of the 2DOF control configuration — lower overshoots and
smoother course of the action value, which is an important criterion too. The change of the
action value can be represented by the valve turn and rapid changes on the valve can

destroy it.
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Figure 4.13 The course of y(¢), w(¢) and u(¢) for IDOF and 2DOF, pole-placement
method, ¢; = 0.4, ELM, CSTR

Table 4.3 presents the results of control from the control quality point of view
according to Equation (4.13). The best results (in the table in bold) are in this case for the

parameter ¢; = 0.4.

Table 4.3 The control quality criteria S, S, for pole-placement method, &ELM, CSTR

1DOF 2DOF

Sul-] Sl-] Sul-] Sil-]

;= 0.05 60457 975.19] 23878.00 1056.20
a;=0.1 32151 590.24 352.55 677.99
;=04 62933 198.81] 1059.00 314.62

As written in the theoretical part, the nominated adaptive controller can deal with

disturbance attenuation, which is proved in Figure 4.14. The simulation was done for

-102-



1DOF control configuration and various values of parameter ¢; = 0.05, 0.1 and 0.4, the
sampling period was 7, = 0.3 min, the simulation time 500 min with one step

change w(r) =2-[1-exp(-0.1-1)] K . Tree types of disturbances, two in the input and one on

the output, are injected to the system during this time:

o v(f) = +3% step change of the input concentration ¢4 for time ¢ e (150;500) min
* (1) =-0.5 K step change of the input temperature T, for time ¢ € (250;500) min
e v3(f) = 0.5 K step change of the output temperature 7, for time ¢ (400;500) min

As can be seen from Figure 4.14, presence of the integration part in the controller
ensures full attenuation of the disturbances on the input or output, respectively. All three
disturbances are suppressed by the used adaptive controller with 1DOF control
configuration. The only difference is in the speed of control and disturbance attenuation.
The response with the lowest value of o; = 0.05 results in the slowest course of the output
variable and the disturbance is suppressed slowly, while the biggest value o; = 0.4
represses the influence of the disturbance faster but with a small overshoot of the output

variable at the very beginning.

w(t), y() [K]
| umrel

0 100 200 300 400 500 0 100 200 300 400 500
t [min] t [min]

Figure 4.14 The course of y(¢), w(t) and u(?) for three disturbances and more values of
the parameter ¢;, 1DOF, pole-placement method, &ELM, CSTR
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The values of the quality indicate that the best results were reached for the ¢; = 0.4,

as also clear from the previous graph.

Table 4.4 The control quality criteria S, S, for pole-placement method, &ELM, CSTR

Sul-] Sl
;= 0.05 60561 297.98
a=0.1 32221 247.82
o =0.4 65938 116.03

ADAPTIVE CONTROL WITH LQ APPROACH

The disadvantage of the pole-placement method is that it is an intuitive method and
there is no general role for the choice of parameter ¢;. This disadvantage should be

overcome, for example, by the use of Linear Quadratic (LQ).

This method is based on minimization of the quadratic criterion J;o in (3.112),
which, in this concrete example, means that polynomial d(s) on the right side of
Diophantine equations (3.81), (3.92) and (3.94) is d (s)z g(s)-n(s). Polynomials n(s)
and g(s) are computed from spectral factorization (3.114) which means that the coefficients

of the polynomials n(s) and g(s) are calculated as

8o = /uLQbOZ’ g = \/2g0g2 +¢LQ“§ +/Ub12 28y = \/2g1g3 +9.0 (a12 —2a0),g3 =\Pro>

_ 2 _ 2 _
ny =+/ay,n, =420, +a, —2a,

Transfer functions of the controller for both 1DOF and 2DOF control

(4.29)

configurations are similar as in Equation (4.22). The degrees of the polynomials d(s), g(s),

r(s)and p(s) are
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degq(s)=dega(s)=2 430)
deg p(s)>dega(s)—-1=2 '
degr(s)=0
and transfer functions (4.22) are
O(s) als) _ qzszzwlswo
s:p(s) s-(s"+ps+p)
B 431)
- (s r
R(s)= = 0
(5) s-p(s) s-(s2 +p,s+po)

The parameters of polynomials g(s), r(s) and f)(s) in (4.31) are then computed

again by the method of parameters comparison.

The ELM was chosen from the range of o-models and simulations were done for
more values of weighting factor ¢, the second weighting factor was set to u;o = 1; results

are shown in the following figures.

The course of the output variable, y(¢), and the input variable u(7) for 1DOF control

configuration is shown in Figure 4.15.
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Figure 4.15 The course of y(f), w(¢) and u(?) for different weighting factor
#ro =0.05, 0.5 and 2, IDOF, LQ method, ELM, CSTR
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As can be seen, the speed of control is quicker with a decreasing value of
weighting factor ¢,o. Control responses have minimal overshoots at the very beginning of

the control and there is no other overshoot for the next step changes for this concrete case.

The course of identified parameters a’y, @’;, b’y and b’ in Figure 4.16 indicates
problems at the very beginning because of initial adaptation but the identification after 50

minutes has no computational problems.
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Figure 4.16 The course of identified parameters a o, a1, b’y and b’ during control,
1DOF, LQ method, &~ELM, CSTR

The 2DOF control configuration displayed in Figure 4.17 shows similar results as
in the previous one. The controller has problems only for weighting factor ¢, = 0.05 at the

beginning and there are some small overshoots after next step changes.

-106-



25 - 80
W %= 005
N T

!y,

2.0

154,
1.04*

u(t)[%]

054

w(t), y(t) [K]

0.0+
-0.54
-1.04
-1.5 T T T -80

100 200 300 400 0 100 200 300 400
t [min] t [min]

Figure 4.17 The course of y(f), w(¢) and u(?) for different weighting factor
#o=0.05, 0.5 and 2, 2DOF, LQ method, &ELM, CSTR

Finally Figure 4.18 compares control results with 1DOF a 2DOF control
configurations for ¢o = 0.5. The courses show similar results except for starting 100 min,
where 1DOF has small problems with identification, which can be clearly seen in the

course of input variable u(?) in the right-hand side graph.
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Figure 4.18 The course of y(#), w(¢) and u(¢) for IDOF and 2DOF, LQ method,
¢0=0.5, 4ELM, CSTR

Table 4.5 shows the values of criteria S, and S, for different values of weighting

factor ¢,o. The best results are reached for ¢ = 0.05 (in bold).
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Table 4.5 The control quality criteria S, and S, for LQ method, &-ELM, CSTR

1DOF 2DOF
Sul-] Sl Su[-] Sl
$ro = 0.05 20824 4339 17260  628.1
$0=0.5 104220  860.0] 13085  1318.2
bro=2 13116 1256.6] 21272 16475

ADAPTIVE CONTROL WITH CONTINUOUS-TIME ELM

The third control analysis was done for Continuous-Time (CT) ELM instead of

o-models. The difference equation for transfer function of the ELM (4.12) is

Y@+ a N @0) +a, y(0) = b () + Buo) (4.32)
and filtered variables u,and yy are, according to Equation (3.31):
PO+ O+ oy, (0)= (o)
: (4.33)

u? () + cul! (0) + cou, () = u(?)

where parameters ¢; and ¢y were chosen 1.4 and 0.49, respectively. The choice of
these parameters was done after several simulation experiments. There is no general rule

for the choice of these parameters, but they must be lower than parameters of the ELM.

The identification part then solves the differential equation (4.32) in the vector

(4.34)
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where data vector, ¢, and vector of parameters, 6, are:

o) =[ =2, (6) = (1), (1)) (1) |

0(1,)=[ap.a.b.5]

(4.35)

and # is discrete time moment ¢, =k -7, for k = 0,1,2,... and 7, as the sampling

period.

Control system configurations with 1DOF and 2DOF are computed similarly to
previous cases. The stable polynomial on the right side of Diophantine equations (4.16)
and (4.23) was designed by the pole-placement method with spectral factorization similar

as like in Part I of this chapter.

The simulation study for different values of parameter ¢; = 0.05, 0.1 and 0.4 was

done and the results are shown in the following graphs.

The course of output and input variables for both 1DOF and 2DOF control
configurations in Figure 4.19 and Figure 4.21 show that the output variable, y(f), reaches
the reference signal, w(¥), faster with increasing value of parameter ¢;. This quick response
results in overshoots of the output variable and rapid changes of the input variable, which

are bad attributes of the high value of ¢;.
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Figure 4.19 The course of y(f), w(¢) and u(¢) for different position of parameter
a;=0.05, 0.1 and 0.4, 1DOF, pole-placement method, CT ELM, CSTR
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The recursive identification with exponential forgetting works properly from
approximately 50 min after start, when the system has enough information about the
system — see Figure 4.20. The course of the identified parameters ao, a;, by and b, after this

time is relatively stable.

35 08
0.6 .
- N\ =0.05
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Figure 4.20 The course of identified parameters ay, a;, by and b, during control, 1DOF,
pole-placement method, CT ELM, CSTR

The course of the output variable for parameter ; = 0.1 has problems after the
second time step, which may be caused by computation problems — see the blue dashed

line in Figure 4.21.

Table 4.6 presents the results of the simulation of control with the continuous-time
ELM. It can be said that setting of the controller with parameter «; = 0.4 has the best

results from the viewpoint of control quality criteria S, and S,.
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Figure 4.21 The course of y(#), w(¢) and u(¢) for different positions of parameter
;= 0.05, 0.1 and 0.4, 2DOF, pole-placement method, CT ELM, CSTR

Table 4.6 The quality criteria S, and S, for pole-placement method, CT ELM, CSTR

1DOF 2DOF

Sul-] Sl-] Sul-] Sil-]

a; = 0.05 1289.67 1029.47 106.14 1259.50)
o;=0.1 ] 10533.92 540.46 287.30  777.53
;=04 | 14452.63 161.56] 13307.10 313.40

Figure 4.22 and Figure 4.23 compare control results for 1DOF and 2DOF
configurations, the &ELM presented in Part 1. and the continuous-time ELM from this
section. As can be seen, the main difference is at the very beginning, where the course for
the CT ELM has a smoother course and the changes of the input variable are not so quick.
The differences are not very significant in this concrete example, but other simulations

have shown benefits of CT ELM. Disadvantage of CT ELM can be found in the

computation demanding.

-111-



25 80
2.0

U
SELM

604 ¥
1.54 /] 404

1047 20

u[%]
o
I

(®), y() [K]
o
ol

w
o ¢
=}

-204

-404

604 %CT ELM

1

T T T T -80 T T T T

100 200 300 400 0 100 200 300 400
t [min] t [min]

]
]

=
o
1

=
o
=]

Figure 4.22 The course of y(f), w(¢) and u(¢) for ELM and CT ELM, pole-placement
method, ¢; = 0.4, 1DOF control configuration, CSTR

80
60+

u[%)

0 100 200 300 400 0 100 200 300 400
t [min]

Figure 4.23 The course of y(f), w(¢) and u(¢) for ELM and CT ELM, pole-placement
method, ¢; = 0.4, 2DOF control configuration, CSTR

The values of coefficients S, and S, Table 4.7 show better control results for the

CT ELM, which is in accordance with the previous graphs.

Table 4.7 The control quality criteria S, and S, for 6~and CT ELM, ¢; = 0.4, CSTR

1DOF 2DOF

Sul-] Sl Sul-] Sl
S-ELM | 62933 19881 1059  314.62
CTELM| 14452  161.56] 13307  313.40
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PREDICTIVE CONTROL

The last simulation study on this type of chemical reactor was done for the

Generalized Predictive Control (GPC) presented theoretically in Chapter 3.2.2.

The goal of the GPC is minimization of the cost function Jspc represented by
Equation (3.120). The sampling period was T, = 0.3 min in this case, the prediction horizon
starts at N; = 0, ends in N, = 49 steps ahead and the length of the manipulation horizon is
N, =10 steps.

Weighting factors J,(j) and A,(j) are constant throughout the whole prediction
horizon, and §,= 1. The simulation study was done for different value, of the weighting

factor A, =0.05, 0.5 and 2.

The system is expected to be linear and is described by the discrete-time transfer

function

G(z)= 5(=") (4.36)

Parameters of polynomials A(z") and B(z") can be derived from the identification

presented above.

The continuous-time ELM G(s) from the identification

G(s)=Pl) __bis+b, _ —0.00635-0.0151 s
a(s) s’ +as+a, s +1.5950s+0.4856 :

has, for the used sampling period 7, = 0.3 min in the discrete-time, form

G(=")= —0.0021z" +0.0010z "
1-1.5851z"' +0.6197z7

(4.38)

and zero mean white noise e(¢) is not take into account.
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The control results presented in Figure 4.24 show that the course of the output
temperature is faster with increasing value of weighting factor A, but some small
overshoots may occur for the highest value, A4, = 2. The ideal value of this factor seems to

be the middle one, i.e. 4,=0.5.
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Figure 4.24 The course of (), w(t) and u(¢) for predictive control and different
values of 4, = 0.05, 0.5 and 2, CSTR

Table 4.8 presents the results of control from the control criterion’s point of view.

As can be seen, value 4, = 2 is proved here.

Table 4.8 The control quality criteria S, and S, for predictive control, CSTR

Sul-] Sl
A =0.05 1865.00 204.71
A= 05 507.19 338.95
=2 160.12 675.33

THE BEST RESULTS OF EACH CONTROL STRATEGY

All simulation studies were done with the same reference signal for all control

strategies presented above, which means that the results are comparable. They are shown
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in Figure 4.25 and Table 4.9. These results clearly show that the best result is obtained for

the predictive control, although the difference among all strategies is not large.
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Figure 4.25 The best results of each control strategies, CSTR

Table 4.9 The control quality criteria S, and S, for the best results, CSTR

Sul-] Sil-]
Pole-placement 1DOF, 6-ELM, ¢; = 0.4 62933 198.81
Pole-placement 2DOF, &ELM, ¢; = 0.4 1059 314.62)
LQ 1DOF, ¢, =0.05 20824 433.90
LQ 2DOF, ¢, =0.05 17260 628.1
Pole-placement 1DOF, CT-ELM, «; = 0.4 25570 93.01
Pole-placement 2DOF, CT-ELM, «; = 0.4 1755 172.86
Predictive control, 4, = 0.5 507 338.95

The results presented in the table and the figure above have shown the best results
for the predictive control from the output variable and input variable point of view too. The
adaptive control with pole-placement method, 2DOF control configuration and CT ELM
can be stated as the second best method and the third is in this adaptive control with pole-

placement method, 2DOF control configuration and &ELM.
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4.2 Plug-Flow Reactor (PFR)

The second simulation model is tubular chemical reactor with the ideal plug-flow
tubular chemical reaction with a simple exothermic consecutive reaction 4 > B = C in the
liquid phase and with cooling in the jacket [19]. These types of reactors are called Plug-
Flow Reactors (PFR) [4].

4.2.1 Description of the Model

The mathematical description of all quantities and relations among them is very
complex and we need some simplifications again. We neglect heat losses and conduction
along the metal wall of the pipes, but heat transfer through the wall is consequential for the
dynamic study. All densities, heat capacities and heat transfer coefficients are expected to

be constant.

Two types of cooling can be used in the jacket — co-current (black solid line) and
counter-current cooling (red dashed line). The differences between them are displayed in

Figure 4.26 and they will be investigated in static and dynamic analyses.

Figure 4.26 PFR with co-current and counter-current cooling in the jacket — the main pipe

The jacket has diameter d; and outer diameter of each pipe is d», while the inner

diameter is denoted as d; — see Figure 4.27.
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d,

Figure 4.27 PFR — one pipe

The mathematical description of the system is based on material and heat balances
inside the reactor. The mathematical model is then described by a set of five Partial

Differential Equations (PDE):

%s iy Pa_ goc
ot 1074
oc oc
a—tBJrv,,'a—ZB:kl-cA—kz-cB
. (4.39)

6Tr+vr'aTr: h, _ 4-U, '(Z._TW)
at aZ pr : cpr dl 'pr 'cpr
oT, 4

= '[dl'Ul'(Tr_Tw)"'dz'Uz'(Tc_Tw)]

ot (alz2 —df)-pw C
The last PDE for co-current cooling is

oT.  oT 4on-d, U,
ey e T.-T 4.40
ot V. Oz (d:?_nl,dzz).pc.cpc( w c) ( )

and for counter-current cooling is this equation (opposite flow of the cooling

medium) denoted as

or, T, 4-n-d, U,

9

o ¢ E_(df—n,-dzz)-pc-cp

(T,-T.) (4.41)

c

where T is the temperature, d represents diameters, p are densities, ¢, means

specific heat capacities, U stands for the heat transfer coefficients, m is a number of tubes
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and L represents the length of the reactor. Index (), means the reaction compound, (*),, is
for the metal wall of the pipes and (¢). for the cooling liquid. Variables v, and v, are fluid

velocities of the reactant and cooling liquid, respectively, as

v, zﬂ; v _4 (4.42)
/. J.
where ¢ are flow rates and f are constants
r-d} T
f=n 4‘ ; fczz(df—nl-df) (4.43)

The reaction velocities, k;, in equations (4.39) and (4.41) are nonlinear functions of

temperature computed via the Arrhenius law

E.
k, =k, -exp(—ﬁj,for j=12 (4.44)

r

where kj represents pre-exponential factors, £ means activation energies and R is

the gas constant. /4, in the third equation is the reaction heat computed as
h =h -k -c,+h,-k,-c, (4.45)

and /; is used for reaction enthalpies.

The mathematical model given in Equations (4.39), (4.40) and (4.41) together with
equations (4.44) and (4.45) shows that this plant is a nonlinear system with continuously
distributed parameters [8]. Strong nonlinearity can be found in Equation (4.44), and the
system is with distributed parameters because of the presence of the PDE where the state
variable is related not only to the time variable, ¢, but the space varibable, z, too.

In this case the initial conditions are c4(z,0) = ¢4'(2), ¢5(z,0) = c5'(2), T(z,0) = T,’(2),
T,(z,0) = T,'(z) and T.z,0) = T./(z) and boundary conditions c4(0,/) = c4o(?),
cp(0,8) = cpo(t) = 0, T(0,8) = To(t), TA0,) = T.o(t) for the co-current cooling and

T.0,¢) = T,o(¢) for the counter-current cooling.
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Fixed parameters, input and state variables
Fixed parameters of PFR are displayed in Table 4.10 [19].

Table 4.10 Parameters of PFR

Name of the parameter Symbol and value of the parameter
Inner diameter of the pipe d=0.02m
Outer diameter of the pipe d»=0.024 m
Diameter of the jacket d;=1m
Number of pipes n; =1200
Length of the reactor L=6m
Density of the reactant pr=985 kg.m’
Density of the pipe’s wall Py = 7800 kg.m’
Density of the cooling liquid pe =998 kg.m’
Heat capacity of the reactant ¢ =4.05 kJ kg K
Heat capacity of the pipe’s wall cw=0.71 kJkg'.K!
Heat capacity of the cooling liquid Cpe=4.18 kJkg' K!
Heat transfer coefficient: reactant-wall U =28 kim>K's"

Heat transfer coefficient: wall-cooling liquid | U, =2.56 kJ.m™> K5

Pre-exponential factor for reaction 1 kio=15.61x10" 5!
Pre-exponential factor for reaction 2 koo =1.128x 10" 57!
Activation energy of reaction 1 to R E\/R=13477TK
Activation energy of reaction 2 to R E)/R=15290 K
Enthalpy of reaction 1 hy = 5.8x10* kJ.kmol’!
Enthalpy of reaction 2 hy = 1.8x10" kJ.kmol
Input concentration of compound A e’ = 2.85 kmol.m™
Input temperature of the reactant T,0=323K
Input temperature of the cooling liquid T.0'=293K
This system has five state variables — concentrations c4(z,f?), cp(z,f) and

temperatures 7,(z,t), T\(z,¢) and T.(z,?).

-119-



The choice of the input variables is theoretically quite wide — for example all
changes of boundary conditions c4o(¢), cpo(?), T,0(¢), Teo(t) or T..(f). However, in our case
volumetric flow rates ¢, and g. were chosen as input variables because of the practical

view again because thez can be easily controlled.

4.2.2 Steady-state Analysis

The difference between the systems with distributed parameters (PFR) and with
lumped parameters (CSTR) is that the former takes into account two derivatives — with
respect to time and with respect to axial variable. Steady-state analysis means, as in the
previous case, solving of the set of PDE (4.39) for time ¢ = oo, which means that all
derivatives with respect to time are equal to zero. But there are still derivatives with

respect to axial variable in the set (4.39) and (4.40).

These derivatives can be replaced from the mathematical point of view by the first

back differences

al - x@O=x=) pi o, (4.46)
dz|. h

z=z z

where x is a general variable, %, is an optional size of the step in axial direction.
The defined input boundary conditions, x,, for i = 1 are equal to boundary conditions x(0).

If the reactor is divided into N, equivalent parts, the discretization step is

h:

L
= 4.47
N, (4.47)

where L denotes the length of the reactor.

Equation (4.46) is valid only for the set of equations (4.39) and (4.40). The system
with counter-current cooling which differs only in Equation (4.41) has the boundary
condition defined for z = L because of the counter-current cooling in the reactor’s jacket.

Therefore, the first forward difference must be used
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dx zx(j+1)—x(j)

,forj =n, n-1,...0 (4.48)
dz|._.

z

The set of PDE (4.39) is then transformed to a set of nonlinear equations

c, (i)z#-q(i—l)

v +h -k ()

ey (i) = v+h k( [k i)+by-cy(i 1)]
_ . (4.49)
T(i)zdl-hZ-Q,,(1)+vr-dl-p,,-cpr-7:,(1—1)+4-051-hz-Tw(1)
' vr'dl'pr'cpr+4‘al'hz
Tw(i) _ d,-a dTr(Oll)Ijz Zz T, (l)
1 1 2 2

and the PDE (4.40) for co-current cooling is

]Z(i):4-nl-dz-az-hz-ﬂv(i)+vc(d32—nl-dzz)pc-cpc-Tc(i—l) (4.50)

4-n1-d2-az-hz+vc(d32—nl-d22)pc‘c

pc

while for counter-current cooling from the equation (4.41) the cooling temperature,

according to first forward difference (4.48), is

4-n1-d2-az-hZ-Tw(j)+vc(d32—nl-dzz)pc-cpc-Tc(j+1)
4-nl-d2-a2~hz+vc(d32—n1~d22)pc-c

T.(j)= (4.51)

pc

The computation of reaction rates k;, k» and reaction heat O, from the equations

(4.44) and (4.45) must be discretized too, i.e.

kj(i) k, exp[ E()) for j=1,2
O, (i) =y -k (i)-c (1) + by ks (i) c5 (i)

(4.52)
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The set of nonlinear equations (4.49), (4.50) and (4.51) must be solved with the
use of iterative methods (Chapter 3.1.3) because the reactive heat, O,, is a nonlinear
function of the reactive temperature, 7,, as can be seen in (4.52). The second reason for the
use of the iterative method is that the boundary condition for the cooling liquid in Equation

(4.51) is defined for axial variable z = L.

In the iterative computation two cycles were used. The outer cycle is iterative and
the inner cycle computes steady-state values in every axial span along the length of the
reactor. The iterative computation is stopped when the sum of the differences between the
mean temperature of the reactant and the cooling liquid in the actual step and in previous

step is lower than accuracy ¢, i.e.

T, (st)=T, (st=1)|+|T. (st)~T.(st=1)| <& forst=1,2,.... \. (4.53)

for £ = 1-10”, st indicates the iterative step, and the mean temperatures are

computed via

_ 1 & _ 1 X

T =—- ; T st =— 4.54
(=5 2.7.() N PRAL (4.54)

The first analysis was done for different volumetric flow rates of the cooling liquid
which is used in variable v, in equations (4.49) — (4.51), see Equation (4.42). The steady-
state behaviour was examined for the range ¢.' = <0.1; 0.35> [m’.s™'] (x-axis). Only the
results for the product’s concentration, cg’, and the reactant’s temperature, 7,’, are shown
here, because of the length of the thesis. In the following 3D graphs the steady-state values

are displayed on the z-axis, and the length of the reactor is on the y-axis.

Figure 4.28 and Figure 4.29 display the results for the co- and counter-current
cooling in the jacket; it can be clearly seen that counter-current cooling results in high

nonlinearity whereas in co-current cooling the variables are much more linear.
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Figure 4.28 Steady-state values of ¢5’ and 7, for different volumetric flow rates of the
cooling liquid, ¢g., co-current cooling, PFR

/

% 1s 1 LI
_% 1. 'w".”"m"'i’?’ﬁ/’,w
= ) i
s e

i

Figure 4.29 Steady-state values of ¢z’ and 7, for different volumetric flow rates of the
cooling liquid, ¢., counter-current cooling, PFR

The second steady-state analysis was done for the same variables but for different

values of the volumetric flow rate of the reactant ¢, = <0.1; 0.35> [m’.s']. The results are

shown in Figure 4.30 and Figure 4.31. The graphs indicate similar behaviour as in the

previous analysis — counter-current cooling is much more non-linear.
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Figure 4.30 Steady-state values of ¢g" and T, for different volumetric flow rated of the
reactant, ¢,, co-current cooling, PFR
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Figure 4.31 Steady-state values of ¢g’ and 7, for different volumetric flow rates of the
reactant, g,, counter-current cooling, PFR

The steady-state analysis results in the working point similarly as for the CSTR.
The optimal working point in this case is defined by the volumetric flow rate of the
reactant ¢,” = 0.150 m’.s"" and the volumetric flow rate of the coolant q’ =0.275 m’.s.

These variables are later used for dynamic analysis and simulation of the control.
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4.2.3 Dynamic Analysis

Dynamic analysis is the next step after the steady-state analysis. It examines the
behaviour after the step change of one of the input variables. Because the set of PDE (4.39),
(4.40) has derivatives with the respect to axial variable z, the discretization described by
equations (4.46) and (4.48) must be used. The set of PDE is then transformed to a set of
ODE:

(4.55)

dr.(i) __ Yoy ta .Tr(i)+£.Tr(i—1)+ 0.(1) P A (i)
dt _h dl.pr.cpr hz lor.cpr dl.pr.cpr

z

dTW(i):_[4.(611.a1+d2.a2):l-Tw(i) ( 4.d, -« -T(i) ( 4-d,-«a, TL(Z)

(@ =d) e | (@ =d)pey ) o, e

For the co-current cooling the last equation for the cooling temperature, 7., has the

following form

dr, (i)
dt

v, 4-n-d, a, NV : 4-n-d, a, )
I T (i) + 2T (1= 1)+ T.(i) (4.56)
l:hz (dsz—nl-dzz)-pc~cpc] c(l) h (l ) ( 2 w(l)

whereas this relation for the counter-current cooling is

darT.(j) v, 4.n-d, a, N , d4on-d. -« .
— | ey T(j)+==-T(j+1)+ 1 72 72 T (4.57)
{hz @ n-d)pe, | 0 U G e )

Again, the computation runs in two cycles. The outer cycle solves numerically the
set of ODE (4.55), (4.56) and (4.57) with the use of Runge-Kutta’s standard method
described in Chapter 3.1.4. The inner cycle divides the reactor into N, equivalent pieces

and computes dynamics in each part.
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Stready-state values from the previous part were used as input variables to the
dynamic analysis, as shown in previous case for CSTR and the standard Runge Kutta’s
method of fourth degree was used for solving this set of ODE [6]. Two dynamic analyses
were done — the first for four step changes £20% and £10% of the volumetric flow rate of
the cooling liquid, 4¢.’, and the volumetric flow rate of the reactant, Ag,’, is —0.055 (-20%),
—0.0275 (-10%), 0.0275 (10%), 0.055 (20%) m’s" for Aq’ and —0.03 (-20%),
—0.015 (~10%), 0.015 (10%), 0.03 (20%) m’.s™" for Agq,’.

These input variables should be mathematically described as

u(t)z%.loo;u(t)z%-loo [%] (4.58)

Output variables y; and y, in the following figures illustrate the difference between
the actual values of the product’s concentration c;, the reactive temperature, 7,, at the end

of the reactor (z = L) and their steady-state values ¢z’ and 7.
yi(t)=cy(t,L)—cy (L) [kmol.m%]; v, (6)=T (t,.L)-T’ (L)[K] (4.59)

Simulation analyses were done again for co-current and counter-current cooling.

Figure 4.32 and Figure 4.33 show dynamic responses for various step changes of

input volumetric flow rates ¢, and ¢,” with co-current cooling in the jacket.

25 57
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Figure 4.32 Output responses of outputs yi(cg) and y,(7,) for various step changes of the
volumetric flow rate of cooling liquid, 4¢.’, co-current cooling, PFR
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These output variables can be described by the second order transfer function,
except for y; which represents the output concentration, cp, for the step change of the
volumetric flow rate on the input. This variable has a very nonlinear course and it can

mean substantial problems in control.
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Figure 4.33 Output responses of outputs y(cz) and y,(7,) for various step changes of the
volumetric flow rate of the reactant, 4g,’, co-current cooling, PFR

Dynamic analysis for the counter-current cooling presented in Figure 4.34 and
Figure 4.35 has all negative properties from the control point of view, such as non-

minimum phase behaviour (output y;) and time delay.

-20 %

10 %]

¥, K]

200 300 400 0 100 200 300 400
t[s] t[s]

Figure 4.34 Output responses of outputs yi(cg) and y,(7,) for various step changes of the
volumetric flow rate of the cooling liquid, 4¢.’, counter-current cooling, PFR
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Figure 4.35 Output responses of outputs y,(cp) and y,(7;) for various step changes of the
volumetric flow rate of the reactant, 4g,’, counter-current cooling, PFR

The last dynamic analysis compares co-current and counter-current cooling for the
same step changes of the input variables. Although the properties of the counter-current
system are not very good for control, it is often used because this type of cooling has a
better cooling effect. This can bee clearly seen in Figure 4.36 and Figure 4.37 — with the
same step change of volumetric flow rates Ag,” and Aq., the stable value of product’s
temperature 7, (output y,) in counter-current is doubled compared to co-current
configuration. Output concentration y; has an interesting course too — non-minimum phase

behaviour and the changing sign of gain.
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Figure 4.36 Comparison of co-current and counter-current cooling for outputs y;(cp)
and y,(T,), step change of the volumetric flow rate of the reactant Aq,” = -20%, PFR
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Figure 4.37 Comparison of co-current and counter-current cooling for outputs y,(cp)
and y,(T,), step change of the volumetric flow rate of the cooling 4q." = -20%, PFR

4.2.4 Simulation of Control

This chapter will present only some of the simulation results of the control of the
PFR because of the space. The goal is to show that control strategies used for the control of

the CSTR in the previous case can be implemented to other types of chemical reactors.

The change of the volumetric flow rate of the reactant, ¢., was used as a control
(input) variable and the output temperature of the reactant, 7,, related to its steady-state

value was used as a controlled (output) variable

t _ s
W):M-loo [%]: y(¢) =T, (1)~ T’ [K] (4.60)
q.
The same second-order transfer function with relative order one, similar to the
previous case
bs+b,

_b(s) _
Gls)= a(s) s +as+a, (“.61)

was used as ELM according to the dynamic analysis from the previous chapter and
the RLS method with changing exponential forgetting was used for parameter estimation,

the same as for CSTR model in Chapter 4.1.4.
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The working point and initial values for identification for the simulation of the

control are shown in Table 4.11.

Table 4.11 Working point and parameters of the identification used for the control, PFR

Name of the parameter

Symbol and value of the parameter

Input concentration of compound A
Input temperature of the reactant

Input temperature of the coolant

Input volumetric flow rate of the reactant

Input volumetric flow rate of the coolant

c0=2.85 kmol.m>

T.0=323 K
T.0=293 K
g, =0.15 m’.s!

q;=0275m’ s

Starting vector of parameters

6,(0)=[0.1,0.1,0.1,0.1]"

Starting covariance matrix

1-10° 0 0 0
0 1.10° 0 0
0 0 1-10° 0
0 0 0 1-10°

P(0)=

The quality of control was evaluated the quality criteria S, and S, described in

Equation (4.13).

To be able to compare the results for all control strategies (shown at the end of this

chapter), the time of the simulation, 7, was 6000 s, the sampling period 7, = 1.5 s, the

input variable was limited to u(¢) = <-80;+80> % of ¢." and three step changes were done

during this time:

w(t)=1-[1-exp(=0.03-1)] K
w(t) =-05K
w(t) =2K

forz € (0;2000) s
for € (2000;4000) s
fort € (4000;6000) s

(4.62)
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ADAPTIVE CONTROL WITH POLE-ASSIGNMENT METHOD

As written above, the same ELM (4.12) was used as the representation of a
nonlinear system which means that the controller has the same structure and the parameters

of the controller are computed similarly as for CSTR in the previous case.

The transfer function of the controller with 1DOF control configuration is given by

Equation (4.18), and parameters of polynomials ¢(s) and [)(s) are computed from the

Diophantine equation(4.16). Stable polynomial d(s) is designed via pole-placement method
connected with the spectral factorization, i.e. d(s) = n(s)-m(s). This method is described in

the previous case.

The ELM is from the range of &models, which means that the vector of the

parameters, 85 and the data vector, @, are

6, (k)=[al,a).b,b;]

. (4.63)
@;(k=1) = [~y (k =1),~y; (k= 2),u; (k= 1),u, (k- 2)]

The vector of parameters, @5, is estimated recursively during control with the help

of any RLS method with the initial values from Table 4.2.

The simulation study is done for different values of parameter ¢; = 0.01, 0.02 and
0.03. The results presented in Figure 4.38 show that the proposed adaptive controller has a
problem with control only at the very beginning of control, where it does not have enough
information about the system. Once the parameters are adapted sufficiently, the control
response has good results. The increasing value of parameter ¢; affects mainly the speed of
response, the overshoots are comparably high. Although the input variable, u(), for the
highest value o; = 0.03 has not an ideal course (with a lot of shocking changes), the
controller with this setting has the best course of the output variable. The values of criteria

S, and S, are displayed in the Table 4.12.
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Figure 4.38 The course of y(#), w(¢) and u(¢) for different position of the parameter
a;=0.01, 0.02 and 0.03, 1DOF, pole-placement method, &~ELM, PFR

The graphs in Figure 4.39 show the results of the recursive identification during
simulation. It can be clearly seen that the used identification has no substantial problem
with the adaptation, except at the beginning of the control. The course of identified
parameter b’y shows that this parameter is very small and is not changing during the

control.
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Figure 4.39 The course of identified parameters a’y, a1, b’y and b’} during the control,
1DOF, pole-placement method, &-ELLM, PFR
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Table 4.12 The control quality criteria S,, S, for pole-placement method, &-ELM, PFR

Sul-] Sl
;= 0.01 70789.83 1141.70
;= 0.02 7555.19 568.15
a;=0.03 13861.81 425.01

The effect of disturbances is displayed in Figure 4.40. The simulation time in this
case is 10 000 s and the value of criterion ¢; is 0.008. Three disturbances are injected to the

system:

o v(r) =+1.5% step change of the input concentration ¢ for time ¢ € (3000;10000) s
e (1) =0.25 K step change of the input temperature 7}, for time ¢ € (5000;10000) s
e v3(f) =-0.2 K step change of the output temperature 7, for time 7 € (7000;10000) s

The course of the output variable shows that the proposed controller has no
problem to deal with these three disturbances — see Figure 4.40. The values of control

quality criteria are S, = 30382.23 and S, = 284.03.
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Figure 4.40 The course of y(f), w(¢) and u(¢) for three disturbances, ¢; = 0.008, 1DOF,
pole-placement method, ELM, PFR
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ADAPTIVE CONTROL WITH LQ APPROACH

The second control analysis was done for the adaptive controller based on LQ
approach, similarly to CSTR. The parameters of stable polynomial d(s) on the right side of
the Diophantine equation (4.16) are computed by minimizing of the cost function (3.112).
The control simulation is done for three different values of weighting factor ¢, = 0.005,

0.01 and 0.02, and the second weighting factor is u;o = 1 for all simulations.

The output variable y(¢) in Figure 4.41 has similar courses as for adaptive control
with pole-placement method presented in the previous chapter. The increasing value of

weighting factor ¢, results in bigger overshoots and slower course of the output variable.

40

20+

uv[2e]
o

-204

0 T T T T T -40 T T T T T
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
t[s] t[s]

Figure 4.41 The course of y(f), w(¢) and u(¢) for different weighting factor
#.0=0.005, 0.01 and 0.02, 1DOF, LQ method, &-ELM, PFR

The RLS with a changing forgetting factor has no bigger problems with on-line

identification of the process — see Figure 4.42.

The values of criteria S, and S, shown in Table 4.13 indicate similar control results

for all three simulation studies. The best results can be seen for the controller with

weighting factor ¢ o = 0.005 for both criteria, S, and S,.
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Figure 4.42 The course of identified parameters a’y, @ ’;, b’y and b’y during the control,
1DOF, LQ method, &~ELM, PFR

Table 4.13 The control quality criteria S,, S, for LQ method, &ELM, PFR

SM[-] Sy[']
$ro = 0.005 118631 405.03]
$r0=0.01 120298 504.75
$ro=0.02 119321 646.08

PREDICTIVE CONTROL

Similar generalized predictive control as for CSTR was used in the last control
simulation study. The sampling period in this case was 7, = 0.9 s, the parameters of the
prediction horizon N; = 0, N, = 50 and N, = 10 steps. Weighting factors were again
constant during the control. The first factor, J,= 1, is the same for all and the second

differs for particular simulation studies — 4, = 0.5, 1 and 2.
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The discrete transfer function, G(z), obtained from the preidentification has form

G(z‘l)—9'23’14'10‘62‘1—3.1421-10-52-2 (4.64)
1-1.9772z7" +0.9773z* )

The simulation results presented in Figure 4.43 show that the course of the output

variable is quicker for the lower value of parameter A, — see the course for 4, =0.5.
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Figure 4.43 The course of (), w(t) and u(¢) for predictive control and different
values of 4,=0.5, 1 and 2, PFR

This contention is supported by the values of quality criteria S, in Table 4.14,
which is the lowest for 4, = 0.5. On the other hand, the bigger value of this criterion gives
better results from the input variable point of view, which is indicated by the S,-value in

Table 4.14.

Table 4.14 The control quality criteria S,, S, for predictive control, PFR

Sul-1 S,[-]
A,=0.5 151.80 633.81
Q=1 51.00 759.63
A,=2 18.81 980.26,
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THE BEST RESULTS OF EACH CONTROL STRATEGY

Similarly as for the previous simulation model, the best results from each control
strategy are compared in Figure 4.44 and Table 4.15. It can be said that the predictive
control approaches to the reference signal in the best way except for the second step

change from 1 K to -0.5 K.
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Figure 4.44 The the best results of each control strategy, PFR

Table 4.15 The control quality criteria S, and S, for the best results, PFR

Sul-] Sy[-]
Pole-placement 1DOF, &-ELM, ¢; = 0.03 13861 425
LQ 1DOF, ¢,o = 0.005 118631 405
Predictive control, A, = 0.5 1251 634

The best results from the criterion S, and S, point of view has again predive control,
especially if the input variable, u(f), has significant importance. On the other hand, the

adaptive controller with LQ approach has the best course of the output variable y(f).
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4.3 Real Model of CSTR

The simulation experiments are not fully credible if they are not verified by
experiments on a real model. Thus, the proposed controllers from the previous parts were
verified on a multifunctional process control teaching system — The Armfield PCT 40 [60].
This device is designed especially for teaching of a wide range of technological and
chemical processes, such as temperature control in heat exchangers, flow control, level
control in water tanks, pressure control and finally conductivity and pH control in

additional PCT 41 and 42 units [61] and [62], which is CSTR. The schematic

representation of the model is displayed in Figure 4.45.

F

Figure 4.45 Multifunctional Process Control Teaching System PCT40 with additional
CSTR (PCT41 and 42)

PCT40 unit consists of two process vessels, several pumps, sensors and connection
to the computer. Additional PCT 41 and 42 units represent a chemical reactor with a stirrer

inside and a cooling/heating lid.
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Figure 4.46 PCT41 and PCT 42 — Process Vessel Accessory (CSTR)

Water can be injected inside the reactor via a normally closed solenoid valve
(SOL1) or by a Proportional Solenoid Valve (PSV). The third option how to feed water
inside the system is with the use of one of peristaltic pumps, A or B, and the second pump
could be used for reactant feeding. This option was used in the following studies. Used

pumps and solenoids are shown in Figure 4.47.

Figure 4.47 Solenoid valve SOLI, proportional solenoid valve PSV and peristaltic
pumps A, B
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The technological parameters of the reactor are shown in the following table.

Table 4.16 Technological parameters of CSTR

Parameter Range
Vessel diameter 0.153m
Maximum vessel depth 0.108 m
Maximum operation volume 21
Minimum vessel depth 0.054 m
Minimum operation volume 1/

Two types of connection are at the disposal (see Figure 4.48). The first connection
with Universal Serial Bus (USB) is included in the standard packing. This connection uses

special software, ArmSoft, which is also included in the package.

Figure 4.48 USB and 60-way 1/O connectors

The view of the main window is in Figure 4.49. The system includes a lot of pre-
defined exercises or possibilities to create one’s own project work. The computer can
communicate with all sensors in real-time via USB cable and the software has

implemented basic PID controller with adjustable parameters.
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&% PCT40 Process Control Apparatus: Section 11 - [Diagram]

File Edit “iew DOptions Sample Format ‘Window Help
e d & EEEE E @ e @ i | &
Sample Data
a 5| HotPump Speed/ Pneumatic valve o] SSR Drive 0.0°C T1
Sample Mo, |1 =
Elapsed Time Omm Pl ~ ‘_‘ HewlLevellow  ose— 15
~ iy l & HAY Over Temp
; Omm P2 - noc T3
2 ” & Themostat
Heater Contral __ o
& Manual/PID Cortrol Ol - 2l soLz 00C i
" Thermostat E | u
; of sS0OL3
PID 4 - ™ e e §mn i - -
Mode: Off - .
5P - ’ ‘| o [omoov User [ iy
FID B -
Made: Off 00mS  Cond o 5oL W || W
5P -
w ' w
i IR l II‘ a pH O mlémin — F1
foa] - moo] J L | I . ' :
. -‘ I * _.: " " E ! i
i - B
W 2] Stirrer 1.4 ' . S B =
Pump & Speed |0 = Pump B Speed |0 =
Diagram Sample Mode - Auto : 1 sec Stopped - click 'GO' to begin recording data IFD: Device Erar

Figure 4.49 ArmSoft simulation system

A disadvantage of this system is that there is no possibility to implement other
control strategies programmed in Matlab, C++ etc. This disadvantage can be overcome
with the second type of connection via a 60-way I/O connector or 50-way I/O connector to
a technological PCI cart in the computer. The technological card used in this case is
MF624 multifunction I/O card from Humusoft. This card has 8 inputs and 8 outputs, which
is sufficient if we operate only one control exercise at a time. The whole system provides 9
inputs and 17 outputs if all exercises work at in the same time. That is why we use two

MF624 cards.

The connection to PC via MF624 cards makes all control exercises fully
programmable with the use of Matlab’s Real-time toolbox and Simulink (Figure 4.50), or

from the Matlab’s command window.
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Figure 4.50 Basic Simulink scheme

All measurements and control signals in the work were made from Matlab’s

command window via commands rtin and rtout.

4.3.1 Description of the Chemical Process

The producer of PCT40 recommends dilution of potassium bicarbonate (KHCO3)
in water. This chemical is non-toxic and the conductivity control could be carried out in
safe conditions of temperature and pressure. However, in our case potassium bicarbonate
was replaced by ordinary sodium chloride (NaCl). The main reason of this substitution was
the cost of experiment — twenty liters of 20% solution of potassium bicarbonate is made
from 4.5 kg of dry KHCO;, which costs about 1350 Czech crowns, and the same amount of
NaCl costs 18 Czech crowns, which is 75 times less than KHCO;. This substitution was

made with the agreement of Armfield, the producer of the PCT40.

Thus, the chemical used in the experiments was 5% solution of NaCl, which means

that 20 litres of the chemical consists of 1 kg dry NaCl solved in 19.5 litres of water. The
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conductivity of this solution is about 60 msS, which is relatively high and suitable for basic

experiments. The conductivity, which will be controlled, changes with the degree of sality.

Other conditions which are common for all measurements are:

The chemical and water are fed in the reactor by peristaltic pumps viewed in Figure
4.43. Volumetric flow rates of these pumps could be theoretically set in the range
0+100 %; however, setting lower than 20% results in very small revolutions of the
rotor and the produced force is not high enough to transport the fluid from the barrel.
The range set into the input recomputed to the volumetric flow rate is shown in

Table 4.17.

Table 4.17 Speed of pumps A and B in % recomputed to the flow rate in L.min™.

irlllslrlltgti)sgg ;;t pt:leA Flow rate of Flow rate of
.| |
and B pump A[Lmin"] | pump B [L.min"]
100% 1.12 1.11
75% 0.80 0.80
50% 0.48 0.51
30% 0.22 0.26

Although the system could be understood as multi-input (input flow rate of water
and 5% salt solution) single-output (conductivity), only flow rate of water was used
as a manipulated (input) variable. The flow rate of the chemical for all

measurements is set to 30% (0.26 L.min™).

The overflow inside the reactor is in the minimum position, which means that the
volume of the reactor is minimal, i.e. 1 liter. This setting is done because of minimal

cost of the experiment.

The reactor is cleaned and fed with clean water before each experiment to ensure the
same starting conditions. It means that at the beginning the conductivity of the bulk

chemical is close to zero.
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e It is expected that the system belongs to the class of lumped parameters systems
which, means that the state variable (in our case the conductivity) depends only on
the time variable. This condition is fulfilled with the stirrer switched on during
measurements. The stirrer has only two states — on/off and the revolutions are not

adjustable.

e Even though the reactor has a heating/cooling coil, this equipment is not used in the

experiments.

e The used clean water is ordinary cold water from the standard water distribution.

4.3.2 Static and Dynamic Analyses

The static study displays steady-state values of the conductivity. It can be said that
the system has mostly linear behaviour for the input variable u = 3070 %, which is
represented by the volumetric flow rate of clean water through peristaltic pump A. As can
be seen in Figure 4.51, the static behaviour for interval u = 70100 % has nonlinear
behaviour. The flow rate lower than 30% was not taken into the examination because the

revolvations of the pump is too low — see the remarks above.

Dynamic analysis was done for six step changes of volumetric flow rate —
Au = 30%, 40%, 55%, 70%, 85% and 100%. The time of the measurement is 720 s (12 min)

and the sampling period for the values retrieval is 7, = 1 s. The results are in Figure 4.51.

= 0,
304 1 304 Au = 30% |
2 ] AU = 40%
254
7) % 201 Au = 55%]]
E £
=201 =15
2 2154 Au=70%T
g = u 0
10 by bty
15 Au = 100%
5- J
10
T T T T T T T 0 T T T T T T T
30 40 50 60 70 80 90 100 0 100 200 300 400 500 600 700
u [%] t[s]

Figure 4.51 Static and dynamic analyses for the real model
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Even though all responses can be described by first order transfer functions, the
external linear model of this process, which is used in the control analysis, is of the second
order with relative order one, i.e.

bs+b,

_b(s) _
G(S)_a(s)_s2+als+a0 (4.65)

4.3.3 Control Analysis

Three control studies were done on this system —adaptive control with pole-

placement, adaptive control with LQ and generalized predictive control (GPC).

As the results must be comparable, the same conditions were used for all
measurements: sampling period 7, = 1 s, final time is 7y = 720 s (12 min) and three step

changes of reference signal w(¢) during the control:

w(t)=15-[1—exp(=0.1-1)] mS  fors €(0;360)s
w(t)=18 mS fort € (360;540)s (4.66)
w(t)=14mS fort €(540;720)s

The output variable y(f) is the conductivity of the chemical in mS and the input
variable u(¢) is the flow rate of clean water through pump A in %. The quality of the

control is evaluated by the control quality criteria, S, and S, described in (4.13).

ADAPTIVE CONTROL WITH POLE-ASSIGNMENT METHOD

The adaptive control is similar as in simulation experiments — the parameters of the
system are estimated recursively during the control and recomputed in each step to the
parameters of the controller. Delta models were used in ELM for adaptive control and
recursive identification with changing exponential forgetting were used in the parameter

estimation. The starting values for the identification are:
e vector of parameters (0) = [1.4425,—0.0141,—0.0090, —0.0033]T
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1-10° 0 0 0
0 1.10° 0 0
0 0 1.10° 0
0 0 0 1-10°

e covariance matrix P(O) =

e constant K =0.001 and parameters y(0) =0, ¢(0) =0

The experiments have shown that the control results are much better if we impose
starting values of the vector of parameters 650) = [1.4425, -0.0141, -0.0090,
-0.0033]" than for arbitrary values. The values of this vector are taken from previous
experiments. They could vary for each experiment but recursive identification would
recompute these parameters to correct ones after some time. The second finding which
follows from practical experiments is that it was good to force this vector for some time at
the beginning, in our case for 50 s. It means that identification runs from the beginning, but
the estimated parameters are taken into account from the time of 20 s to the end of control.
The parameters from time 0-50 s are same as in #50). The results of control are then much
better and smoother on the contrary the controller without this condition ends with

unacceptable results for some cases.

The transfer function of the controller for the 1DOF configuration in this case is

=y 4(s) g8’ +gs+g,
Q(S)_s-p(s)_ P (4.67)

where the parameters of polynomials f)(s) and ¢(s) are computed similarly as in

the previous cases. The results for different values of ¢; = 0.08, 0.1 and 0.3 presented in
Figure 4.10 show that increasing value of ¢; results in a quick output response but the input
variable, u(¢), has a smoother course for smaller values of «; which is considered for the

pumps.
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Figure 4.52 The course of y(#), w(¢) and u(¢) for different positions of parameter
2;=0.08, 0.1 and 0.3, 1DOF, pole-placement method, ~ELM, real model

The courses of the identified parameters in Figure 4.53 show that the used
identifying method has no problems with recursive estimation of unknown parameters a’,

a’y, b’y and b’y during whole measurement, and the estimation is relatively smooth after

100 s.

0.00

-0.01 2 =0.3 ]

- - \.'.w...\

2, =0.08 =01 1

50,02
-0.03

-0.04
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=-0.0051
500101
-0.0154
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-0.030
0

100 200 300 400 500 600 700 0 100 200 300 []460 500 600 700
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Figure 4.53 The course of identified parameters a’y, a’1, b’o and b’ during control,
1DOF, pole-placement method, &-ELM, real model

-147-



The best control response according to quality criteria S, and S, is found for

o; = 0.08, as can be seen in Table 4.18.

Table 4.18 The control quality crit., S, S, for pole-placement method, 6-ELM, real model

Sul-] Sl
;= 0.08 3524.8 5418.0
a=0.1 6228.4 5681.3
=03 78275.0 5055.4

ADAPTIVE CONTROL WITH LQ APPROACH

The second controller was designed with the use of the LQ approach. Both 1DOF
and 2DOF control configurations were used. The system is described by a second order
transfer function (4.12); it means that the controllers are similar as in simulation Chapters

4.1.4 and 4.2.4. Transfer functions of the controllers are then

2
~ 45 tq5+q, 5 o

= ,R(s)= 4.68
o) S'(S2+p1S+p0) (5) s‘(sz+pls+p0) (4.68)

The initial parameters for identification are the same as in the previous case and

the identification is switched off during the initial 50 s again.

As written above, the LQ method is based on minimizing of the cost function,
Equation (3.112), three studies for different weighting factor ¢, = 0.001, 0.005 and 0.01

were done. The results are shown in Figure 4.54 and Figure 4.55.
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Figure 4.54 The course of y(#), w(¢) and u(¢) for different positions of parameter
¢.0=10.001, 0.005 and 0.01, 1DOF, LQ method, &-ELM, real model

As can be seen, the main advantage of the 2DOF configuration is that the
controller can work properly from the beginning and not only after the second step change
from 14 to 18 mS — see Figure 4.13. The value of the second weighting factor, u;p = 1, is

fixed for all studies. Again, the recursive identification has no problems with estimation.
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Figure 4.55 The course of y(#), w(¢) and u(¢) for different positions of parameter
¢.o=0.001, 0.005 and 0.01, 2DOF, LQ method, &-ELM, real model

The best setting of the controller is shown for ¢, = 0.005, which results in the
smallest values of criteria S, and S, — see Table 4.19. Both configurations are compared in

Figure 4.56.
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Figure 4.56 The course of y(¢), w(¢) and u(¢) for IDOF and 2DOF, LQ method,
#.o = 0.005, &ELM, real model

Table 4.19 The control quality criteria S,, S, for LQ method, -ELM, real model

1DOF 2DOF

Sul-] Sil-] Sul-] Sil-1

#.0=10.001 83804 7018.5] 94095 5843.6
¢o=0.005 34463 62954 35760 5980.4
#o=0.01 19042 7386.0] 44833 6876.0

PREDICTIVE CONTROL

The last control study uses Generalized Predictive Control (GPC). GPC technique

. . . . . . . -1
does not use recursive identification, all we need is discrete transfer function G(z™):

()= 236810727 ~8.4440-1072 (4.69)
1-04892z ' —0.5208z" _

This transfer function was obtained as a result of discrete identification from
previous control studies. The sampling period is again 7, = 1 s, the prediction horizon

starts at N; = 0, ends in N, = 49 steps ahead, the length of the manipulation horizon is

N, =10 steps and the first weighting factor is 6,= 1.
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Figure 4.57 The course of (), w(¢) and u(¢) for predictive control and different
values of 4, = 0.05, 0.1 and 1, real model

The control analyses for different weighting factor 4, = 0.05, 0.1 and 1 are shown
in Figure 4.57. Increasing value of A, results in a slower control response but smoother
course of the manipulated variable u(#), which is confirmed by the smallest value of quality

criterion S, for A, = 1 in Table 4.20.

Table 4.20 The control quality criteria S,, S, for predictive control, real model

Su[-] Sl
2, =0.05 98784 2838.2
2. =0.1 73756 3229.2
A= 17360 3345.2

THE BEST RESULTS OF EACH CONTROL STRATEGY

All simulation studies were done for the same initial conditions, the same sampling
period and the same step changes, which mean that we can now compare the best control
responses of all control strategies. The results are shown in Figure 4.58 and Table 4.21.
The best controllers from the controlled output y(¢) point of view are adaptive controller

with LQ method and 2DOF configuration and GPC controller. On the other hand, the best
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controller from the practical point of view, where also changes of the input variable u(¢)

are important, is the adaptive controller with pole-placement method.
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Figure 4.58 Comparison of the best control responses for Pole-placement method, LQ
method and GPC

Table 4.21 The control quality criteria S,, S, for the best results in each control strategy

Sul-] Sil-1
Pole-placement, ¢; = 0.1 6228 5681.3
LQ IDOF, ¢,o=0.005 34463 6295.4
LQ 2DOF, ¢,o = 0.005 35760 5980.4
GPC, 4, =1 17360 3345.2
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CONCLUSIONS AND DISCUSSIONS

The main objective of this work was to show the process from simulation of
steady-state and dynamic analysis of different types of chemical reactors to simulation of
control and verification on a real model. The chemical reactors are typical representatives
of nonlinear processes, which makes them uneasy to control. However, adaptive and
predictive control methods used for controlling have good control results although all
models have negative control properties such as nonlinearity, time delay, non-minimum

phase behaviour or changing sign of gain.

The controlled systems are first subjected to simulation analyses so that the
behaviour of the system is obtained before designing the controller. The methods used for
simulation in this work are mathematical modelling, steady-state and dynamic analyses.
All these simulations were done in mathematical software Matlab. Although this software
has build-in functions for computing the set of Ordinary Differencial Equations (functions
ode23, ode45, odell3 etc.), ODE are solved in this work with the help of Runge-
Kutta’s standard method programmed via equations (3.19) and (3.20) in the Chapter 3.1.4.
The reason for the use of our own subfunctions is that functions ode23, ode45 etc. have
a variable integration step which is recomputed in according to the actual computation
error and this recomputation could sometimes result in inappropriate results. On the other
hand, standard Runge-Kutta’s method has a fixed step, which should overcome this
disadvantage. The second disadvantage of the use of functions 0de23 and 0de45 is the

computation time, which is a bit longer than with the use of our own subfunction.

Simulation results will then present the behaviour of the system, which can help
with the choice of the optimal working point, control strategy and design of the controller.
Both control strategies, adaptive and predictive Control, were first verified simulatively

and then on a real model of the CSTR.

A problem with the used Adaptive approach, which is based on the recursive
identification of the External Linear Model of the originally nonlinear system, can be
found at the beginning of control. The controller has not enough amount of information
about the controlled system, and this results in inappropriate control responses and
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overshoots, or, in the worst case, the controller does not work. However, the control

response after the second and higher step change is usually much better.

One way how to overcome this problem is a use of the proportional controller for
some initial time, e.g. for initial 15 steps. The input and the output have then a smooth
course and the controller is fed by the initial data which reflects the behaviour of the
system. The adaptive controller is switched on after these 15 steps and the controller works
much more properly than without this improvement. This method was used in practical

part.

The second option how to minimize the bad behaviour of the controller at the
beginning is to use an exponential function for the first step change of the wanted value
instead of the clean step change from the first value (usually from 0) to the second value.
The reference signal then starts from zero and approaches to the final value more slowly

than the clear step change.

Both methods were used in the simulation experiments but the measurements on
the real model have shown that these methods cannot be used in every case. Nonlinearity
and uncertainty of the controlled system cause inappropriate responses. The way of the
attenuation of this goes through identified parameters from some previous measurements
which are forced as a result from the recursive identification for some initial time. The
identification runs from the beginning but the estimated parameters in initial 50 seconds
are replaced by the parameters from a previous identification. The newly estimated
parameters are used for the computation after this initial time. This improvement of the
control algorithm results in stable control response because the controller does not work or
works with poor results without this improvement. The use of parameters from previous
measurements could evoke questions: Why can we use these parameters for actual
measurements? What will happen if we do not have the same conditions as in the previous
case? Actually, the answers to these questions are not critical for the results because the
recursive identification runs independently to this intervention; moreover, this
improvement the helps controller to achieve identified parameters more quickly. Different
properties of the chemical could result in different parameters of ELM but the parameters

taken from the previous studies are much closer to these parameters than arbitrary ones.
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Interesting results in the pole-placement method are obtained with the use of
spectral factorization. The parameters of the ELM could sometimes indicate unstable roots
and if we choose these parameters as a part of the optional polynomial d(s) on the right
side of the Diophantine equations, the resulted controller is unstable too. The spectral
factorization takes for designing of polynomial d(s) only stable pairs of the roots and the

problem with unstable controller is thus solved.

It is usually required that the controller must be tuned somehow. The optional
tuning parameter in the pole-placement method with spectral factorization is position of
the pole (root) ¢;. The increasing value of this parameter result in quicker responses but
overshoots of the output variable, as it is shown in the practical part. On the other hand,
LQ technique has two tuning parameters, weighting factors 14 and ¢,o, and the control
response depends on the ratio between these parameters. There are two cases which
indicates what is important on the control process — (1) the course of the output variable y(7)
(@ro rises with relation to the fixed z40) or (2) the course of the input variable u(?) (o

decreases with relation to the fixed z4).

The use of different identification methods do not have different results — the
results are in this case the same for all modifications of the Recursive least squares method
with exponential or directional forgetting. Little worse results are obtained for the

exponential forgetting with constant exponential forgetting but only in some cases.

The last modification of the controller is the use of different control configuration
with the one degree-of-freedom (1DOF) and two degrees-of-freedom (2DOF). The
simulation results and measurements on the real model have shown in some cases that
2DOF control configuration has better control results at the beginning of the control
especially after the first step change when the output response from the controller with
I1DOF results in overshoots while 2DOF controller has much smoother course without

overshoots.

Proposed adaptive controllers have good results of the control and fulfilled basic
control requirements such as the stability, the reference signal tracking and disturbance

attenuation.
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The best control results for all models are obtained for predictive control. The used
generalized predictive control needs only two pieces of information at the beginning of
control — the discrete-time transfer function, G(z), of the system and weighting sequences
o, and A,. The transfer function was obtained from some of the previous identifications.
The predictive controller could be refined by an adaptive part where the parameters of the
transfer function are identified recursively, similarly to the adaptive controller. This
approach in our case does not result in better output responses but it can help with
controlling of other (more complex) types of systems. The predictive control could be
tuned by the choice of the ratio between parameters ¢, and 4, similarly as for LQ control —
more important is the course of the output variable y(¢) (4, rises with relation to the fixed

0,) or the course of the input variable u(f) (4, decreases with relation to the fixed J,).

The three main goals stated at the beginning of this thesis are fulfilled in 3 chapters

in the following way.

1. To perform static and dynamic analyses of different types of stirred reactors and

tubular reactor.

The experimental part of the thesis is focused on simulation of the static and
dynamic behaviour of (1) the CSTR with the so called Van der Vusse reaction A>B—>C,
2A->D described by a set of four ODE, (2) the tubular chemical reactor with consecutive
exothermic reaction A>B—>C which mathematical model consists of a set of five partial
differential equations and (3) measurement of the static and dynamic analysis on the real

model of the CSTR. This goal has been reached.
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2. To prepare different modern control algorithms to control these chemical

reactors and verify these algorithms by simulation.

The theoretical part describes the process for constructing two types of control
strategies — (1) adaptive control and (2) predictive control. The used adaptive approach is
based on the choice of the ELM of the originally nonlinear process parameters of which
are estimated recursively, and these parameters are then used for computation of the
controller’s parameters. Two control schemes were used in controller configuration — a
scheme with one degree-of-freedom (1DOF) and two degrees-of-freedom (2DOF). The
predictive control is based on Generalized Predictive Control, where the sequence of inputs
to the controlled system is computed by minimizing of the cost function based on the sum
of the control error and input variable. Both control techniques were verified on two types
of chemical reactors — CSTR and tubular reactor described in the previous point.
Simulations were performed for different values of the adjustable parameters of controller,
position of root ¢; in pole-placement method, weighting factor ¢, in LQ control or
weighting factor 4, in generalized predictive control, which shows the effect of this
parameter to the output response from the controlled system. This point seems to be

fullfiled too.

3. To verify the proposed controllers from the simulation part on a real model of

the continuous stirred tank reactor (CSTR)

The last goal is connected with the verification of results from simulations to the
measurements on the real model. Both adaptive and predictive approaches were used for
controlling of the reactant’s conductivity in the real model of CSTR. The presented output
responses have shown that adaptive and predictive controllers constructed in the simulation
part for different systems can be applied (with some additional measurements and settings)
for this reactor, which makes them applicable for other systems. This could be considered

the main result of the thesis.
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